Skip to main content
Log in

Borel-Écalle Resummation of a Two-Point Function

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We provide an overview of the tools and techniques of resurgence theory used in the Borel-Écalle resummation method, which we then apply to the massless Wess–Zumino model. Starting from already known results on the anomalous dimension of the Wess–Zumino model, we solve its renormalisation group equation for the two-point function in a space of formal series. We show that this solution is 1-Gevrey and that its Borel transform is resurgent. The Schwinger–Dyson equation of the model is then used to prove an asymptotic exponential bound for the Borel transformed two-point function on a star-shaped domain of a suitable ramified complex plane. This proves that the two-point function of the Wess–Zumino model is Borel-Écalle summable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In order to avoid confusion between the kinematic parameter of the two-point function and the length of the path, we will denote the former by the letter \(\Lambda \).

  2. \(f:U\subset \mathbb {C}\longrightarrow \mathbb {C}\) is real if \(f(\bar{z}) =\overline{f(z)}\) whenever both sides of the equation make sense. We require this condition since we want the resummed function to represent a physical quantity.

  3. This was not published since the perturbation around higher singularities of the Borel transform are subdominant and difficult to approach numerically.

  4. At least the first one, but since a singularities in \(\omega \in \mathbb {C}^*\) generally produces new singularities in \(\omega \mathbb {N}^*\) (as in Example 2.12), we expect that all singularities will depend on L, at least in some non-perturbative regime.

  5. This being of course an abuse of language, it is only possible if Eq. (20) is a bound not an equivalence. We are not more precise in order to not burden the text with too much technical details.

References

  1. Zhang, B., Dang, V.: Renormalization of Feynman amplitudes on manifolds by spectral zeta regularization and blow-ups. (2017). arXiv:1712.03490

  2. Pascalie, R.: A Solvable Tensor Field Theory (2019). arXiv:1903.02907

  3. Broadhurst, D.J., Kreimer, D.: Exact solutions of Dyson–Schwinger equations for iterated one-loop integrals and propagator-coupling duality. Nucl. Phys. B 600, 403–422 (2001). arXiv:hep-th/0012146

    Article  ADS  Google Scholar 

  4. Clavier, P.J.: Analytic results for Schwinger–Dyson equations with a mass term. Lett. Math. Phys. (2015). https://doi.org/10.1007/s11005-015-0762-1. arXiv:1409.3351

    Article  MathSciNet  MATH  Google Scholar 

  5. Bersini, J., Maiezza, A., Carlos Vasquez, J.: Resurgence of the renormalization group equation. Ann. Phys. 415. arXiv:1910.14507

  6. Bellon, M.P., Clavier, P.J.: A Schwinger-Dyson equation in the Borel plane: singularities of the solution. Lett. Math. Phys. (2015). https://doi.org/10.1007/s11005-015-0761-2. arXiv:1411.7190

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellon, M.P., Clavier, P.J.: Alien calculus and a Schwinger–Dyson equation: two-point function with a nonperturbative mass scale. Lett. Math. Phys. 108(2), 391–412 (2016). https://doi.org/10.1007/s11005-017-1016-1. arXiv:1612.07813 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Écalle, J.: Les fonctions résurgentes, vol. 1. Pub. Math, Orsay (1981)

    MATH  Google Scholar 

  9. Écalle, J.: Les fonctions résurgentes, vol. 2. Pub. Math, Orsay (1981)

    MATH  Google Scholar 

  10. Écalle, J.: Les fonctions résurgentes, vol. 3. Pub. Math, Orsay (1981)

    MATH  Google Scholar 

  11. Écalle, J.: Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Hermann (1992)

  12. Menous, F.: Les bonnes moyennes uniformisantes et leurs applications a la resommation reelle. Ph.D. thesis, 1996. Thèse de doctorat dirigée par Écalle, Jean Sciences et techniques communes Paris 11. http://www.theses.fr/1996PA112392 (1996)

  13. Menous, F.: Les bonnes moyennes uniformisantes et une application à la resommation réelle. Annales de la Faculté des sciences de Toulouse: Mathématiques, 6e série 8(4), 579–628 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Vieillard-Baron, E.: From resurgent functions to real resummation through combinatorial Hopf algebras. Ph.D. thesis, 2014. Thèse de doctorat dirigée par Rolin, Jean-Philippe Mathématiques Dijon. http://www.theses.fr/2014DIJOS005 (2014)

  15. Aniceto, I., Schiappa, R.: Nonperturbative ambiguities and the reality of resurgent transseries. Commun. Math. Phys. 335, 183–245 (2013). arXiv:1308.1115

    Article  ADS  MathSciNet  Google Scholar 

  16. Schiappa, R., Aniceto, I., Başar, G.: A primer on resurgent transseries and their asymptotics. Phys. Rep. 809, 02 (2018). https://doi.org/10.1016/j.physrep.2019.02.003

    Article  MathSciNet  Google Scholar 

  17. Dorigoni, D.: An introduction to resurgence, trans-series and alien calculus. Ann. Phys. (2014). https://doi.org/10.1016/j.aop.2019.167914

    Article  MathSciNet  MATH  Google Scholar 

  18. Sauzin, D.: Nonlinear analysis with resurgent functions (2012). arXiv:1212.4477v4

  19. Bellon, M.P., Clavier, P.J.: Analyticity domain of a quantum field theory and accelero-summation. Lett. Math. Phys. (2019). https://doi.org/10.1007/s11005-019-01172-0. arXiv:1806.08254

    Article  MathSciNet  MATH  Google Scholar 

  20. Sokal, A.D.: An improvement of Watson’s theorem on Borel summability. J. Math. Phys. 21(2), 261–263 (1980). https://doi.org/10.1063/1.524408

    Article  ADS  MathSciNet  Google Scholar 

  21. Costin, O.: On Borel summation and Stokes phenomena for rank-1 nonlinear systems of ordinary differential equations. Duke Math. J. (1998). https://doi.org/10.1215/S0012-7094-98-09311-5. arXiv:math/0608408

    Article  MathSciNet  MATH  Google Scholar 

  22. Costin, O.: Exponential asymptotics, trans-series and generalized Borel summation for analytic nonlinear rank one systems of ODE’s. arXiv:math/0608414

  23. Menous, F.: The well-behaved catalan and brownian averages and their applications to real resummation. In: Proceedings of the Symposium on Planar Vector Fields (Lleida, 1996). Publ. Mat., vol. 41, pp. 209–222 1997

  24. Bouillot, O.: Invariants Analytiques des Difféomorphismes et MultiZêtas. Ph.D. thesis, Université Paris-Sud, vol. 11. http://tel.archives-ouvertes.fr/tel-00647909 (2011)

  25. Sauzin, D.: Introduction to 1-summability and resurgence (2014). arXiv:1405.0356v1

  26. Sauzin, D., Kamimoto, S.: Iterated convolutions and endless Riemann surfaces. Annali Scuola Normale Superiore - Classe di Scienze (2016). https://doi.org/10.2422/2036-2145.201708008. arxiv:1610.05453v2

    Article  MATH  Google Scholar 

  27. Viellard-Baron, E.: Écalle’s averages, Rota–Baxter algebras and the construction of moulds (2019). arXiv:1904.02417v1

  28. Borinsky, M., Dunne, G.V.: Non-perturbative completion of Hopf-algebraic Dyson-Schwinger equations. Nucl. Phys. B 957, 115096 (2020). https://doi.org/10.1016/j.nuclphysb.2020.115096. ISSN: 0550-3213

    Article  MathSciNet  Google Scholar 

  29. Écalle, J., Menous, F.: Well-behaved convolution averages and the non-accumulation theorem for limit-cycles. In: The Stokes Phenomenon and Hilbert’s 16th Problem. https://doi.org/10.1142/3031

  30. Clavier, P.J.: Analytic and Geometrical approches of non-perturbative quantum field theories. Ph.D. thesis (2015)

  31. Wess, J., Zumino, B.: Supergauge transformations in four dimensions. Nucl. Phys. B 70, 39–50 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  32. Zumino, B., Wess, J.: A lagrangian model invariant under supergauge transformations. Phys. Lett. 49B, 52–55 (1974)

    ADS  Google Scholar 

  33. Costin, O.: Asymptotics and Borel summability, Monographs and Surveys in Pure and Applied Mathematics, p. 9781420070316. Chapman and Hall/CRC, Boca Raton (2008). ISBN: 13: 9781420070316

    Google Scholar 

  34. Costin, O., Tanveer, S.: Nonlinear evolution PDEs in \(\mathbb{R}^+ \times \mathbb{C}^d\) existence and uniqueness of solutions, asymptotic and Borel summability properties. Ann. I. H. Poincaré AN 24 (2007)

  35. Bellon, M.P.: An efficient method for the solution of Schwinger–Dyson equations for propagators. Lett. Math. Phys. 94, 77–86 (2010). https://doi.org/10.1007/s11005-010-0415-3. arXiv:1005.0196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Bellon, M.P., Clavier, P.J.: Higher order corrections to the asymptotic perturbative solution of a Schwinger–Dyson equation. Lett. Math. Phys. 104, 1–22 (2014). https://doi.org/10.1007/s11005-014-0686-1. arXiv:1311.1160v2

    Article  MathSciNet  MATH  Google Scholar 

  37. Bellon, M.P., Clavier, P.J.: Solving a Dyson–Schwinger equation around its first singularity in the Borel plane. Front. Phys. (2016). https://doi.org/10.1007/s11467-016-0582-5

    Article  Google Scholar 

  38. Bellon, M., Lozano, G., Schaposnik, F.: Higher loop renormalization of a supersymmetric field theory. Phys. Lett. B 650, 293–297 (2007). https://doi.org/10.1016/j.physletb.2007.05.024. arXiv:hep-th/0703185

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. ’t Hooft, G.: Can We Make Sense Out of “Quantum Chromodynamics”?, pp. 943–982. Springer US, Boston (1979). https://doi.org/10.1007/978-1-4684-0991-8_17

    Book  Google Scholar 

  40. Hörmander, L.: An Introduction to Complex Analysis in Several Complex Variables. Elsevier, Amsterdam (1966)

    MATH  Google Scholar 

  41. Bellon, M.P.: Approximate differential equations for renormalization group functions in models free of vertex divergencies. Nucl. Phys. B 826(3), 522–531 (2010). https://doi.org/10.1016/j.nuclphysb.2009.11.002. ISSN: 0550-3213

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Marc Bellon for many exciting discussions on resurgence theory and the Wess–Zumino model. I also thank David Sauzin for having kindly answered my questions regarding his nonlinear analysis for resurgent functions and Sylvie Paycha for encouragements, discussions and suggestions. I am very grateful for Marc Bellon’s and Sylvie Paycha’s corrections an an early draft of this paper. I would also like to thank the two anonymous referees whose questions and suggestions have greatly improved the quality of this paper. This work was partly completed while at the Perimeter Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre J. Clavier.

Additional information

Communicated by Karl-Henning Rehren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clavier, P.J. Borel-Écalle Resummation of a Two-Point Function. Ann. Henri Poincaré 22, 2103–2136 (2021). https://doi.org/10.1007/s00023-021-01057-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01057-w

Navigation