Skip to main content
Log in

Static Spherically Symmetric Einstein-Vlasov Bifurcations of the Schwarzschild Spacetime

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We construct a one-parameter family of static and spherically symmetric solutions to the Einstein-Vlasov system bifurcating from the Schwarzschild spacetime. The constructed solutions have the property that the spatial support of the matter is a finite, spherically symmetric shell located away from the black hole. Our proof is mostly based on the analysis of the set of trapped timelike geodesics and of the effective potential energy for static spacetimes close to Schwarzschild. This provides an alternative approach to the construction of static solutions to the Einstein-Vlasov system in a neighbourhood of black hole vacuum spacetimes made in Rein (in Mathematical proceedings of the cambridge philosophical society. Cambridge University Press, Cambridge, vol 115, pp 559–570, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We note that \({\mathcal {L}}\) is the Lagrangian of a free-particle.

  2. See [32] Lemma 7.

  3. The latin indices run from 1...3.

  4. \(r_1\) will be the second largest root of the equation \(\displaystyle e^{2\mu (r)}\left( 1 + \frac{\ell }{r^2} \right) = E^2\) corresponding to the metric g.

  5. We note that the dependence of \(r_i\) in \((E, \ell )\) is smooth.

  6. In the small data regime, one expects that the range of parameters leading to trapped geodesics to be close to that of Schwarzschild.

  7. In the regions \(]2M, R_\mathrm{min}^\delta [\) and \(]R_\mathrm{max}^\delta , \infty [\), there exits no matter; Hence, by Birkhoff’s theorem, the metric must be the Schwarzschild metric.

  8. See Theorem 17.6 , Ch. 17 of [16] for a proof.

  9. \(B(r^\mathrm{Sch}_i(E, \ell ), \delta _0) = \left\{ r\in I\,:\, |r - r^\mathrm{Sch}_i(E, \ell )| <\delta _0 \right\} \).

  10. Here, we didn’t write the dependence of \(G_\Phi \) on the variables r and \(\delta \) in order to lighten the expressions.

References

  1. Andersson, L., Korzyński, M.: Variational principle for the Einstein-Vlasov equations. arXiv preprint arXiv:1910.12152, (2019)

  2. Andréasson, H., Fajman, D., Thaller, M.: Static solutions to the Einstein-Vlasov system with a nonvanishing cosmological constant. SIAM J. Math. Anal. 47(4), 2657–2688 (2015)

    Article  MathSciNet  Google Scholar 

  3. Andréasson, H., Kunze, M., Rein, G.: Existence of axially symmetric static solutions of the Einstein-Vlasov system. Commun. Math. Phys. 308(1), 23 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  4. Andréasson, H., Kunze, M., Rein, G.: Rotating, stationary, axially symmetric spacetimes with collisionless matter. Commun. Math. Phys. 329(2), 787–808 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. Andréasson, H., Rendall, A.D., Weaver, Marsha: Existence of CMC and constant areal time foliations in T 2 symmetric spacetimes with Vlasov matter. (2005)

  6. Bahcall, J.N., Al Wolf, R.: Star distribution around a massive black hole in a globular cluster. Astrophys. J. 209, 214–232 (1976)

    Article  ADS  Google Scholar 

  7. Batt, J., Faltenbacher, W., Horst, E.: Stationary spherically symmetric models in stellar dynamics. Arch. Ration. Mech. Anal. 93(2), 159–183 (1986)

    Article  MathSciNet  Google Scholar 

  8. Chandrasekhar, S: The mathematical theory of black holes. In: Oxford: Clarendon (1992) 646 p., Oxford: Clarendon (1985)

  9. Choquet-Bruhat, Y.: Problème de Cauchy pour le système intégro-différentiel d’Einstein-Liouville. Annales de l’institut Fourier 21, 181–201 (1971)

    Article  MathSciNet  Google Scholar 

  10. Dafermos, M.: Spherically symmetric spacetimes with a trapped surface. Class. Quant. Grav. 22(11), 2221 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dafermos, M.: A note on the collapse of small data self-gravitating massless collisionless matter. J. Hyperbol. Differ. Equ. 3(04), 589–598 (2006)

    Article  MathSciNet  Google Scholar 

  12. Dafermos, M., Rendall, A.D: Strong cosmic censorship for T2-symmetric cosmological spacetimes with collisionless matter. arXiv preprint arXiv:gr-qc/0610075 (2006)

  13. Dafermos, M., Rendall, A.D.: Strong cosmic censorship for surface-symmetric cosmological spacetimes with collisionless matter. Commun. Pure Appl. Math. 69(5), 815–908 (2016)

    Article  MathSciNet  Google Scholar 

  14. Fajman, D.: The nonvacuum Einstein flow on surfaces of negative curvature and nonlinear stability. Commun. Math. Phys. 353(2), 905–961 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fajman, D., Joudioux, J., Smulevici, J.: The Stability of the Minkowski space for the Einstein-Vlasov system. arXiv preprint arXiv:1707.06141, (2017)

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (2015)

    MATH  Google Scholar 

  17. Israel, W.: Relativistic kinetic theory of a simple gas. J. Math. Phys. 4(9), 1163–1181 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jeans, J.H.: Problems of cosmogony and stellar dynamics. CUP Archive, (2017)

  19. Jeans, J.H.: On the theory of star-streaming and the structure of the universe. Mon. Not. R. Astron. Soc. 76, 70–84 (1915)

    Article  ADS  Google Scholar 

  20. Lichtenstein, L.: Gleichgewichtsfiguren rotierender Flüssigkeiten. Springer, New York (2013)

    MATH  Google Scholar 

  21. Lindblad, H., Taylor, M.: Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge. arXiv preprint arXiv:1707.06079, (2017)

  22. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. math. 105(1), 415–430 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  23. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Princeton University Press, Princeton (2017)

    MATH  Google Scholar 

  24. Peebles, P.J.E.: Star distribution near a collapsed object. Astrophys. J. 178, 371–376 (1972)

    Article  ADS  Google Scholar 

  25. Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95(2), 281–303 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  26. Rein, G.: Static solutions of the spherically symmetric Vlasov–Einstein system. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol 115, pp. 559–570. Cambridge University Press, Cambridge (1994)

  27. Rein, G., Rendall, A.D.: Global existence of solutions of the spherically symmetric Vlasov-Einstein system with small initial data. Commun. Math. Phys. 150(3), 561–583 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  28. Rein, G., Rendall, A.D.: The Newtonian limit of the spherically symmetric Vlasov-Einstein system. Commun. Math. Phys. 150(3), 585–591 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  29. Rein, G., Rendall, A.D.: Smooth static solutions of the spherically symmetric Vlasov-Einstein system. In: Annales de l’IHP Physique théorique, vol 59, pp. 383–397 (1993)

  30. Rein, G., Rendall, A.D.: Compact support of spherically symmetric equilibria in non-relativistic and relativistic galactic dynamics. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 128, pp. 363–380. Cambridge University Press, Cambridge (2000)

  31. Ringström, H.: On the Topology and Future Stability of the Universe. OUP Oxford, Oxford (2013)

    Book  Google Scholar 

  32. Sarbach, O., Zannias, T.: The geometry of the tangent bundle and the relativistic kinetic theory of gases. Class. Quant. Grav. 31(8), 085013 (2014)

    Article  ADS  Google Scholar 

  33. Schaeffer, J.: A class of counterexamples to Jeans’ theorem for the Vlasov-Einstein system. Commun. Math. Phys. 204(2), 313–327 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  34. Smulevici, J.: Strong cosmic censorship for T2-symmetric spacetimes with cosmological constant and matter. In: Annales Henri Poincaré, volume 9, pp. 1425–1453. Springer, (2008)

  35. Smulevici, J.: On the area of the symmetry orbits of cosmological spacetimes with toroidal or hyperbolic symmetry. Anal. PDE 4(2), 191–245 (2011)

    Article  MathSciNet  Google Scholar 

  36. Synge, J.L.: The energy tensor of a continuous medium. Trans. Roy. Soc. Canada, pp. 127, (1934)

  37. Tauber, G.E., Weinberg, J.W.: Internal state of a gravitating gas. Phys. Rev. 122(4), 1342 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  38. Taylor, M.: The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system. Ann. PDE 3(1), 9 (2017)

    Article  MathSciNet  Google Scholar 

  39. Thaller, M.: Existence of static solutions of the Einstein-Vlasov-Maxwell system and the thin shell limit. SIAM J. Math. Anal. 51(3), 2231–2260 (2019)

    Article  MathSciNet  Google Scholar 

  40. Weaver, M.: On the area of the symmetry orbits in T-2 symmetric spacetimes with Vlasov matter. Class. Quant. Grav. 21(4), 1079 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank my advisor Jacques Smulevici for suggesting this problem to me, as well for many interesting discussions and crucial suggestions. I would also like to thank Nicolas Clozeau for many helpful remarks. This work was supported by the ERC Grant 714408 GEOWAKI, under the European Union’s Horizon 2020 research and innovation program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Ezzahra Jabiri.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Study of the Geodesic Motion in the Exterior of Scwharzschild Spacetime

A Study of the Geodesic Motion in the Exterior of Scwharzschild Spacetime

We present a detailed study of the geodesic motion in the exterior region of a fixed Schwarzschild spacetime. We will classify the geodesics based on the study of the effective energy potential. Such a classification is of course classical and we refer to [8, Chapter 3] or [23, Chapter 33] for more details. In this section, we prove Proposition 1.

  • First, note that \(E^{Sch}_\ell \) is a cubic function in \(\displaystyle \frac{1}{r}\). Its derivative is given by

    $$\begin{aligned} \forall r> 2M\, , \quad {E^{Sch}_\ell }'(r) = \frac{2}{r^4}\left( Mr^2 -\ell r + 3M\ell \right) . \end{aligned}$$

    Three cases are possible :

  1. 1.

    \(\displaystyle {E^{Sch}_\ell }'\) has two distinct roots \(\displaystyle r_\mathrm{max}^\mathrm{Sch}<r_\mathrm{min}^\mathrm{Sch}\), where \(r_\mathrm{max}^\mathrm{Sch}\) and \(r_\mathrm{min}^\mathrm{Sch}\) correspond respectively to the maximiser and the minimiser of \(\displaystyle {E^{Sch}_\ell }\). They are given by

    $$\begin{aligned}&r_\mathrm{max}^\mathrm{Sch}(\ell ) = \frac{\ell }{2M}\left( 1 - \sqrt{1-\frac{12M^2}{\ell }}\right) , \\&r_\mathrm{min}^\mathrm{Sch}(\ell ) = \frac{\ell }{2M}\left( 1 + \sqrt{1-\frac{12M^2}{\ell }}\right) . \end{aligned}$$

    The extremums of \({E^{Sch}_\ell }\) are given by

    $$\begin{aligned}&E^\mathrm{min}(\ell ) = E^{Sch}_\ell (r_\mathrm{min}^\mathrm{Sch}(\ell )) = \frac{8}{9}+\frac{\ell -12M^2}{9Mr_\mathrm{min}^\mathrm{Sch}(\ell )}, \end{aligned}$$
    (A.1)
    $$\begin{aligned}&E^\mathrm{max}(\ell ) = E^{Sch}_\ell (r_\mathrm{max}^\mathrm{Sch}(\ell )) = \frac{8}{9}+\frac{\ell -12M^2}{9Mr_\mathrm{max}^\mathrm{Sch}(\ell )}. \end{aligned}$$
    (A.2)

    In fact, we compute

    $$\begin{aligned} 1 - \frac{2M}{r_\mathrm{max}^\mathrm{Sch}(\ell )} = 1 - \frac{4M^2}{\ell \left( 1 - \sqrt{1 - \frac{12M^2}{\ell }} \right) } = \frac{2}{3} - \frac{1}{3}\sqrt{1 - \frac{12M^2}{\ell }}, \end{aligned}$$

    and

    $$\begin{aligned} 1 + \frac{\ell }{r_\mathrm{max}^\mathrm{Sch}(\ell )^2} = 1 + \frac{\ell }{36M^2}\left( 1 + \sqrt{1 - \frac{12M^2}{\ell }}\right) ^2. \end{aligned}$$

    Therefore,

    $$\begin{aligned} E_\ell ^\mathrm{Sch}(r_\mathrm{max}^\mathrm{Sch}(\ell ))&= \left( 1 - \frac{2M}{r_\mathrm{max}^\mathrm{Sch}(\ell )}\right) \left( 1 + \frac{\ell }{r_\mathrm{max}^\mathrm{Sch}(\ell )^2} \right) \\&= \left( \frac{2}{3} + \frac{\ell }{18M^2} + \frac{\ell }{18M^2}\sqrt{1 - \frac{12M^2}{\ell }}\right) \left( \frac{2}{3} - \frac{1}{3}\sqrt{1 - \frac{12M^2}{\ell }}\right) \\&=\frac{8}{9}+\frac{\ell -12M^2}{9Mr_\mathrm{max}^\mathrm{Sch}(\ell )}, \end{aligned}$$

    where the last expression is obtained by straightforward computations. We do the same thing for \(E^\mathrm{max}(\ell )\). This case occurs if and only if \(\displaystyle \ell >12M^2\).

  2. 2.

    \(\displaystyle {E^{Sch}_\ell }'\) has one double root at \(r_c = 6M\). The extremum of \(E^{Sch}_\ell \) is given by

    $$\begin{aligned} E_\ell ^c = \frac{8}{9}. \end{aligned}$$

    This case occur if and only if \(\ell = 12M^2\).

  3. 3.

    \(\displaystyle {E^{Sch}_\ell }'\) has no real roots. Then, \(\displaystyle {E^{Sch}_\ell }\) is monotonically increasing from 0 to 1. This case occurs if and only if \(\ell < 12M^2\).

We refer to Fig. 1 in the introduction for the shape of the potential energy in the three cases.

  • Note that by the mass shell condition (2.27), we have

    $$\begin{aligned} E^2 \ge E_\ell ^\mathrm{Sch}(r) \end{aligned}$$

    for any timelike geodesic moving in the exterior region. In particular,

    $$\begin{aligned} E^2 \ge E^\mathrm{min}(\ell ) \ge \frac{8}{9} \end{aligned}$$

    along any geodesic with \(\ell >12M^2\). Therefore, we obtain a lower bound on E:

    $$\begin{aligned} E \ge \sqrt{\frac{8}{9}} \end{aligned}$$

    for geodesics with \(\ell >12M^2\).

  • Now, we claim that the trajectory is a circle of radius \(r_0^\mathrm{Sch} > 2M\) if and only if

    $$\begin{aligned} E^{Sch}_\ell (r_0^\mathrm{Sch}) = E^2 \quad \text {and}\quad {E^{Sch}_\ell }'(r_0^\mathrm{Sch}) = 0. \end{aligned}$$
    (A.3)

    Indeed, if the motion is circular of radius \(r_0^\mathrm{Sch}\), then \(\displaystyle \forall \tau \in {\mathbb {R}}\,:\, r(\tau ) = r_0^\mathrm{Sch}\). Thus,

    $$\begin{aligned} \forall \tau \in {\mathbb {R}} \,,\, w(\tau ) := \dot{r}(\tau ) = 0 \quad \text {and}\quad \dot{w}(\tau ) = 0. \end{aligned}$$

    Besides, it is a solution to the system (2.35)–(2.36). Therefore

    $$\begin{aligned} \forall \tau \in {\mathbb {R}} \,,\, {E^{Sch}_\ell }'(r_0^\mathrm{Sch}) = {E^{Sch}_\ell }'(r(\tau )) = 0. \end{aligned}$$

    By (2.27), we have

    $$\begin{aligned} \forall \tau \in {\mathbb {R}} \,,\, w(\tau )^2 + {E^{Sch}_\ell }(r(\tau )) = E^2. \end{aligned}$$

    In particular,

    $$\begin{aligned} {E^{Sch}_\ell }(r_0^\mathrm{Sch}) = E^2. \end{aligned}$$

    Now, let us suppose that there exists \(r_0^\mathrm{Sch}>2M\) such that

    $$\begin{aligned} E^{Sch}_\ell (r_0^\mathrm{Sch}) = E^2 \quad \text {and}\quad {E^{Sch}_\ell }'(r_0^\mathrm{Sch}) = 0. \end{aligned}$$

    By the above assumption, we have \(w = 0\) and \({E^{Sch}_\ell }'(r_0^\mathrm{Sch}) = 0\) so that the point \((r_0^\mathrm{Sch}, 0)\) is a stationary point \(\forall \ell \ge 12 M^2\). Furthermore,

  1. 1.

    \(r_0^\mathrm{Sch}= 6 \), if \(\ell = 12M^2\),

  2. 2.

    \(r_0^\mathrm{Sch}\in \left\{ r_\mathrm{min}^\mathrm{Sch}(\ell ), r_\mathrm{max}^\mathrm{Sch}(\ell )\right\} \), if \(\ell > 12M^2\).

The circular orbits are thus characterised by (A.3).

  • We consider now the case \(\ell >12M^2\) and the equation

    $$\begin{aligned} E^2 = E^{Sch}_\ell (r). \end{aligned}$$
    (A.4)

    Let \(\displaystyle (\ell , E)\in \Big ]12M^2, \infty \Big [\times \Big ]\frac{8}{9}, \infty \Big [\). Four cases may occur:

  1. 1.

    If \(\displaystyle E^2 = E_\ell ^\mathrm{min}\) or \(\displaystyle E^2 = E_\ell ^\mathrm{max}\), then \(r_\mathrm{min}^\mathrm{Sch}\) or \(r_\mathrm{max}^\mathrm{Sch}\) satisfy (A.3), so that they are double roots. Besides, we note that \(\ell = \ell _{ub}\) where

    $$\begin{aligned} \ell _{ub}(E) := \frac{12M^2}{1-4\alpha -8\alpha ^2-8\alpha \sqrt{\alpha ^2+\alpha }} \quad \quad \alpha := \frac{9}{8}E^2 - 1 \end{aligned}$$
    (A.5)

    satisfies \(E^2 = E_\ell ^\mathrm{min}\). In fact, we solve the equation below for \(\ell \)

    $$\begin{aligned} \frac{8}{9} + \frac{\ell - 12M^2}{9\frac{\ell }{2}\left( 1 + \sqrt{1-\frac{12M^2}{\ell }}\right) } = E^2. \end{aligned}$$

    We make the following change of variables

    $$\begin{aligned} \alpha := \frac{9}{8}E^2 - 1\quad \text {and}\quad X := \sqrt{\frac{\ell - 12M^2}{\ell }}. \end{aligned}$$

    The equation becomes

    $$\begin{aligned} \frac{X^2}{4\left( 1 + X \right) }= \alpha , \end{aligned}$$

    which is easily solvable for X. We can then obtain \(\ell _{ub}(E)\). Similarly, we obtain \(\ell _{lb}\) defined by

    $$\begin{aligned} \ell _{lb}(E) := \frac{12M^2}{1-4\alpha -8\alpha ^2+8\alpha \sqrt{\alpha ^2+\alpha }}, \end{aligned}$$
    (A.6)

    which solves the equation \(E^2 = E_\ell ^\mathrm{max}\).

  2. 2.

    If \(\displaystyle E^2 > E_\ell ^\mathrm{max}\), then two cases occur

    1. (a)

      \(E^2 < 1\). The equation (A.4) has one simple root \(r_2^\mathrm{Sch}(E, \ell )> r_\mathrm{min}^\mathrm{Sch}(\ell )\)

    2. (b)

      \(E^2 \ge 1\). The equation (A.4) has no positive roots. The trajectories in this case are similar to the trajectories in case 3 (where \(\ell <12M^2\)).

    3. 3.

      \(\displaystyle E^2 \in \Big ]E_\ell ^\mathrm{min}, E_\ell ^\mathrm{max}\Big [\). Again, two cases occur

      1. (a)

        \(E^2 < 1\). Then, the equation (A.4) admits three simple positive roots \(r_i^\mathrm{Sch}(E, \ell )\)

        $$\begin{aligned} r_0^\mathrm{Sch}(E, \ell )< r_\mathrm{max}^\mathrm{Sch}(\ell )< r_1^\mathrm{Sch}(E, \ell )< r_\mathrm{min}^\mathrm{Sch}(\ell ) < r_2^\mathrm{Sch}(E, \ell ). \end{aligned}$$
        (A.7)
      2. (b)

        \(E^2 \ge 1\). The equation (A.4) admits two simple positive roots \(r_i^\mathrm{Sch}(E, \ell )\)

        $$\begin{aligned} r_0^\mathrm{Sch}(E, \ell )< r_\mathrm{max}^\mathrm{Sch}(\ell )< r_1^\mathrm{Sch}(E, \ell ) < r_\mathrm{min}^\mathrm{Sch}(\ell ) . \end{aligned}$$
        (A.8)
  • We consider now the case \(\ell \le 12M^2\). Three cases may occur:

  1. 1.

    If \(\displaystyle E^2 = \frac{8}{9}\) and \(\ell = 12M^2\), then the equation (A.4) has one triple positive root \(\displaystyle r_c = 6M\).

  2. 2.

    If \(0<E^2<1\), then the equation (A.4) has one simple positive root \(r_1^\mathrm{Sch}(E, \ell )\).

  3. 3.

    If \(E^2 \ge 1\), then the equation (A.4) no positive roots.

  • Based on the above cases, we define the following parameters sets

    $$\begin{aligned} {\mathcal {A}}_{circ}&:= \left\{ \left( \sqrt{\frac{8}{9}}, 12M^2\right) \right\} \bigcup \left\{ (E, \ell )\in \Big ]\sqrt{\frac{8}{9}}, \infty \Big [\times \Big ]12M^2, \infty \Big [\,:\, E^2 < 1,\quad \ell = \ell _{ub}(E) \right\} \nonumber \\&\quad \bigcup \left\{ (E, \ell )\in \Big ]\sqrt{\frac{8}{9}}, \infty \Big [\times \Big ]12M^2, \infty \Big [\,:\, \ell = \ell _{lb}(E) \right\} , \end{aligned}$$
    (A.9)
    $$\begin{aligned} {\mathcal {A}}_\mathrm{bound}&:= \left\{ (E, \ell )\in \Big ]\sqrt{\frac{8}{9}}, \infty \Big [\times \Big ]12M^2, \infty \Big [\,:\, E^2<1 ,\quad \ell _{lb}(E)<\ell < \ell _{ub}(E) \right\} , \end{aligned}$$
    (A.10)
    $$\begin{aligned}&{\mathcal {A}}_{unbound} := \left\{ (E, \ell )\in \Big ]\sqrt{\frac{8}{9}}, \infty \Big [\times \Big ]12M^2, \infty \Big [\,:\, E^2 \ge 1 ,\quad \ell > \ell _{lb}(E) \right\} , \end{aligned}$$
    (A.11)
    $$\begin{aligned} {\mathcal {A}}_{abs}&:= \left\{ (E, \ell )\in \Big ]\sqrt{\frac{8}{9}}, \infty \Big [\times \Big ]12M^2, \infty \Big [\,:\, E^2< 1, \quad \ell < \ell _{lb}(E) \right\} \nonumber \\&\quad \bigcup \left\{ (E, \ell )\in \Big ]0, 1\Big [\backslash \sqrt{\frac{8}{9}}\times \left[ 0, 12M^2 \right] \right\} \end{aligned}$$
    (A.12)
  • Now, we determine the nature of orbits (circular, bounded, unbounded, “absorbed by the black hole”) in terms of the parameters \((E, \ell )\) as well as the initial position and velocity. Let \(\ell \in [0, \infty [\), \(\displaystyle {{\tilde{r}}}\in ]2M, \infty [\) and \(\displaystyle {{\tilde{w}}}\in {\mathbb {R}}\). We compute

    $$\begin{aligned} E = \sqrt{E^{Sch}_\ell ({{\tilde{r}}}) + {{\tilde{w}}}^2}. \end{aligned}$$
  1. 1.

    If \((E, \ell )\in {\mathcal {A}}_\mathrm{bound}\), then there exists \(r_i^\mathrm{Sch} := r_i^\mathrm{Sch}(E, \ell ), i\in \left\{ 0, 1, 2\right\} \) solutions of (A.4) and satisfying (A.7). Now recall that

    $$\begin{aligned} E^{Sch}_\ell (r) \le E^2, \quad \forall r>2M. \end{aligned}$$
    (A.13)

    This implies that \({{\tilde{r}}}\) must lie in the region \(\displaystyle \Big ]2M, r_0^\mathrm{Sch}\Big ]\cup [r_1^\mathrm{Sch}, r_2^\mathrm{Sch}]\). Two cases are possible

  • either the geodesic starts at some point in \(]2M, r_0^\mathrm{Sch}]\) and reaches the horizon \(r= 2M\) in a finite proper time,

  • or the geodesic is trapped between \(r_1^\mathrm{Sch}\) and \(r_2^\mathrm{Sch}\).

  1. 2.

    If \((E, \ell )\in {\mathcal {A}}_{unbound}\), then there exists \(r_i^\mathrm{Sch} := r_i^\mathrm{Sch}(E, \ell ), i\in \left\{ 0, 1, \right\} \) solutions of (A.4) and satisfying (A.8). By (A.13), \({{\tilde{r}}}\) must lie in the region \(]2M, r_0^\mathrm{Sch}]\cup [r_1^\mathrm{Sch}, \infty [\). Therefore, two cases are possible

  • either the geodesic starts at some point in \(]2M, r_0^\mathrm{Sch}]\) and reaches the horizon \(r= 2M\) in a finite proper time,

  • or the geodesic stars at some point in \([r_1^\mathrm{Sch}, \infty [\), hits the potential barrier at \(r_1^\mathrm{Sch}\) and goes to back to infinity (case of negative initial radial velocity); or the geodesic stars at some point in \([r_1^\mathrm{Sch}, \infty [\) and goes to infinity (case of positive initial radial velocity).

  1. 3.

    If \((E, \ell )\in {\mathcal {A}}_{abs}\), then the equation (A.4) has at most one positive root \(r_0^\mathrm{Sch}\). Two cases are possible:

  • The geodesic starts at some point in \(]2M, r_0^\mathrm{Sch}]\) and reaches the horizon in a finite proper time.

  • The geodesic starts at some point in \(]2M, \infty [\) negative initial radial velocity and reaches the horizon in a finite time.

  1. 4.

    If \((E, \ell )\in {\mathcal {A}}_{circ}\), then the equation (A.4) admits one triple root if \(\displaystyle E = \sqrt{\frac{8}{9}}\) or a double root. In this case, the geodesic is a circle if and only if it starts at the point \(r_c\in \left\{ 6M, r_\mathrm{min}^\mathrm{Sch}(\ell ), r_\mathrm{max}^\mathrm{Sch}(\ell )\right\} . \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabiri, F.E. Static Spherically Symmetric Einstein-Vlasov Bifurcations of the Schwarzschild Spacetime. Ann. Henri Poincaré 22, 2355–2406 (2021). https://doi.org/10.1007/s00023-021-01028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01028-1

Navigation