Skip to content
BY 4.0 license Open Access Published by De Gruyter April 23, 2021

Szeged-type indices of subdivision vertex-edge join (SVE-join)

  • Syed Sheraz Asghar , Muhammad Ahsan Binyamin , Yu-Ming Chu EMAIL logo , Shehnaz Akhtar and Mehar Ali Malik

Abstract

In this article, we compute the vertex Padmakar-Ivan (PIv) index, vertex Szeged (Szv) index, edge Padmakar-Ivan (PIe) index, edge Szeged (Sze) index, weighted vertex Padmakar-Ivan (wPIv) index, and weighted vertex Szeged (wSzv) index of a graph product called subdivision vertex-edge join of graphs.

1 Introduction, basic definitions, and notations

A molecule is represented by a graphical method which shows the relationship between the atoms and bonds in that molecule. Such a representation is called a molecular graph. We denote a molecular graph by Γ. The set containing all the atoms is called the vertex set of the molecular graph Γ, and denoted by V(Γ). Similarly, the set containing all the edges of Γ is denoted by E(Γ). The quantity |V(Γ)| represents the number of atoms in Γ, and it is called the order of Γ. Similarly, the cardinality |E(Γ)| represents the size of Γ, which is the number of chemical bonds or edges in Γ. Let |V(Γ)| = n and |E(Γ)| = m. The distance dΓ(v,w) between two vertices v,wV(Γ) is the length of a path of minimal length joining v with w in Γ. Let u,x,yV(Γ) and e = xyE(T). The distance between u and e is defined as dΓ(u,e) = min{dΓ(u,x), dΓ (u,y)}. A set SE(Γ) is called an edge-cut of a connected graph Γ if Γ − S is disconnected. For e = uvE(Γ), the cardinalities of the sets containing vertices or edges in Γ, which are closer to one end-vertex of e are important to study. These number are obtained from the sets defined as follows:

(1) N u ( e | Γ ) = { x V ( Γ ) | d Γ ( u , x ) < d Γ ( v , x ) }

(2) M u ( e | Γ ) = { f E ( Γ ) | d Γ ( u , f ) < d Γ ( v , f ) }

The cardinalities |Nu (e|Γ)| and |Mu (e|Γ)| are denoted by nu (e|Γ) and mu (e|Γ), respectively. The quantities nv (e|Γ) and mv (e|Γ) are defined analogously. Similarly, we define the sets N0 (e|Γ) and M0 (e|Γ) of vertices and edges that are equidistant from both ends of the edge e = uv as follows:

(3) N 0 ( e | Γ ) = { x V ( Γ ) | d Γ ( u , x ) = d Γ ( v , x ) }

(4) M 0 ( e | Γ ) = { f E ( Γ ) | d Γ ( u , f ) = d Γ ( v , f ) }

Clearly {Nu, Nv, N0} define the vertex partition of Γ with respect to an edge eE(Γ). Thus nu + nv + n0 = n. Observe that in any bipartite graph, n0 = 0.

2 Topological indices

A molecular or topological descriptor/index is a quantity that correlates some properties of a molecule by a constant. These properties include physical or chemical properties or biological reactivity in molecules. The definitions and analysis of these topological indices uses several tools from graph theory and heavily depends on it. A standard procedure in QSAR/QSPR studies is to find applications of molecular descriptors. The relations between the physico-chemical properties of a chemical compounds and the molecular connectivity of the same compound are used in QSAR/QSPR studies by using graph techniques. The same process is adopted in computer-aided drug discovery and predictive toxicology. As a result, many molecular topological descriptors emerge from the successful relationships which are found (Azari and Iranmanesh, 2013; Bajaj et al., 2006; Balasubramanian, 1985a, 1985b; Basak et al., 2000).

Wiener (1947) defined the first topological index called the Wiener index as a structural descriptor for some alkanes. This index is defined as the sum of all pairwise distances between vertices of a graph. This index has been intensively studied in theoretical chemistry. It has found numerous applications in pharmacology, and many physico-chemical properties of organic molecules, see books (Balaban et al., 1983; Diudea, 2001) and survey (Dobrynin and Entringer, 2011). For a connected graph Γ, the Wiener index W(Γ) and its equivalent form for a tree T is defined as follows.

(5) W ( Γ ) = { u , v } V ( Γ ) d Γ ( u , v ) , W ( T ) = uv E ( T ) n u n v

Platt (1952) used the term Wiener number for it and the same has been exclusively used ever since. Hundreds of molecular descriptors have been defined during the past decade. All of these indices are candidates for possible applications in molecular structure-property studies and many are actually used in QSAR/QSPR studies (Devillers and Balaban, 1999; Gupta et al., 2002; Hansch and Leo, 1996). The advancement in the quantitative study of structure-property relationships requires investigation of new indices that are capable of correlating different properties of chemical compounds. These descriptors are tested with linear or multivariate regressions for their applications in pharmacology and engineering sciences (Randić, 2004).

In this paper we study several Szeged-type topological indices of SVE-join of graphs. First we introduce the basic definitions of these indices and notations in the next section.

3 Szeged-type indices

In this section, we introduce some Szeged-type topological indices that are defined as the number of vertices or edges that lye on either side of a vertex or an edge. These indices are distance based indices and are extensively studied in the literature for their applications (Gutman et al., 1995). Now we define some Szeged indices as follows.

Gutman (1994) extended the idea of the Wiener index to any connected graph and named it as Szeged index (Szv) defined in the following way.

S z v ( Γ ) = e = xy E ( Γ ) n x ( e | Γ ) n y ( e | Γ ) .

The vertex Padmakar-Ivan (PIv) index of a graph Γ was defined by Khalifeh et al. (2009), as follows:

P I v ( Γ ) = e = xy E ( Γ ) ( n x ( e | Γ ) + n y ( e | Γ ) ) .

Khadikar et al. (2001) defined the Padmakar-Ivan or PIe index as follows:

P I e ( Γ ) = e = xy E ( Γ ) ( m x ( e | Γ ) + m y ( e | Γ ) ) .

Gutman and Ashrafi (2008) defined the index (Sze) as the edge type of the already defined Szeged index as:

S z e ( Γ ) = e = xy E ( Γ ) m x ( e | Γ ) m y ( e | Γ ) .

The weighted vertex Padmakar-Ivan (wPIv) index of a graph Γ was defined by Ilic and Milosavljevic (2013) as described below:

P I v ( Γ ) = e = xy E ( Γ ) ( d Γ ( x ) + d Γ ( y ) ) ( n x ( e | Γ ) + n y ( e | Γ ) ) .

The weighted vertex Szeged index (wSzv) defined in Ilic and Milosavljevic (2013) is given by:

S z v ( Γ ) = e = xy E ( Γ ) ( d Γ ( x ) + d Γ ( y ) ) n x ( e | Γ ) n y ( e | Γ ) .

4 SVE-join of graphs

Graph operations are used to construct new graphs whose structure is defined in terms of the structural properties of underlying graphs. In this section, we define a recently defined graph operation known as subdivision vertex edge join of graphs. It is denoted by SVE-join of graphs. This operation is applied on three graphs and results in one product graphs. The study of topological indices for several graph operations has been carried out in the literature, for examples see: Ashrafi et al. (2010), Das et al. (2013), De et al. (2016), Imran et al. (2020), Khalifeh et al. (2008), Klavžar et al. (1996), Liu et al. (2019), Nagarajan et al. (2014), Pattabiraman and Kandan (2016), Pattabiraman and Paulraja (2012), Siddiqui (2020), Tavakoli and Rahbarnia (2013), Xu et al. (2019), Yang et al. (2019), Yousafei-Azari et al. (2008).

The SVE-join of graphs has been introduced recently in Wen et al. (2019). It is defined as follows. Let Γ1, Γ2, and Γ3 are three graphs. Let 𝒮(Γ1) denotes the subdivision of of Γ1. Then the vertex set of Γ1 has two portions, one V1) that contains the original vertices of the graph Γ1, and the other is denoted by V′(Γ1), which includes the new vertices that are inserted into the old edges to subdivide them the edges of Γ1. Let Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) denotes the SVE-join of our graphs Γ1, Γ2 and Γ3. The vertex set of Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) is V1) ∪ V′1) ∪ V2) ∪ V3) and the edge set of Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) is the set E1) ∪ E2) ∪ E3) and all edges that join the vertices of Γ1 with the vertices of Γ3 and all edges joining the vertices in V′(Γ1) with all the vertices of Γ2.

Consider three graphs C4, P3, and K2. Then the SVE join C 4 𝒮 ( P 3 𝒱 K 2 E ) is shown in Figure 1. It can bee seen that the edge subdivision of C4 is performed first and then the vertices of C4 are joined with all of P3 and the new vertices introduced in the subdivision of C4 are joined with all vertices of K2.

Figure 1 The SVE-join 






C
4
𝒮

⊳

(


P
3
𝒱

∪

K
2
E


)



C_4^{\cal S} \triangleright \left( {P_3^{\cal V} \cup K_{^2}^E} \right) 


 of graphs.
Figure 1

The SVE-join C 4 𝒮 ( P 3 𝒱 K 2 E ) of graphs.

5 Previous results

For an edge xy of the graph Γ, let NΓ(xy) be the set of common neighbors of x and y, and N′Γ(xy) be a set of edges that are lying at distance one from x and y. The set N′Γ(x) (NΓ(y)) have the edges that are at distance one from x (y).

In the following lemma, we present some structural properties of the SVE-join of graphs.

Lemma 5.1

According to Wen et al. (2019), let Γ1, Γ2 and Γ3 be graphs. Then the degree of vertices in the SVE join Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) and the number of vertices and edges closer to arbitrary vertices and edges in this product is given below:

  1. | V ( Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) ) | = n 1 + m 1 + n 2 + n 3 and | E ( Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) ) | = 2 m 1 + n 1 n 2 + m 1 n 3 + m 2 + m 3 .

  2. d Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) ( x ) = { d Γ 1 ( x ) + n 2 , if x V ( Γ 1 ) , n 3 + 2 , if x E ( Γ 1 ) , d Γ 2 ( x ) + n 1 , if x V ( Γ 2 ) , d Γ 3 ( x ) + m 1 , if x V ( Γ 3 ) .

  3. n x ( e = xy | ( Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) ) = { d Γ 2 ( x ) | N Γ 2 ( xy ) | , if xy E ( Γ 2 ) , d Γ 3 ( x ) | N Γ 3 ( xy ) | , if xy E ( Γ 3 ) , n 2 + n 3 d Γ 2 ( y ) + d Γ 1 ( x ) , if x V ( Γ 1 ) and y V ( Γ 2 ) , n 2 + n 3 + 2 d Γ 3 ( y ) , if x E ( Γ 1 ) and y V ( Γ 3 ) , n 2 + n 1 2 + d Γ 1 ( x ) , if x V ( Γ 1 ) and y E ( Γ 1 ) .

  4. n y ( e = xy | ( Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) ) = { d Γ 2 ( y ) | N Γ 2 ( xy ) | , if xy E ( Γ 2 ) , d Γ 3 ( y ) | N Γ 3 ( xy ) | , if xy E ( Γ 3 ) , n 1 + m 1 d Γ 1 ( x ) , if x V ( Γ 1 ) and y V ( Γ 2 ) , n 1 + m 1 2 , if x E ( Γ 1 ) and y V ( Γ 3 ) , m 1 + n 3 + 2 d Γ 1 ( x ) , if x V ( Γ 1 ) and y E ( Γ 1 ) .

  5. m x ( e = xy | ( Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) ) = { n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | + d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) , if xy E ( Γ 2 ) , m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | + d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) , if xy E ( Γ 3 ) , m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | + ( n 3 + 1 ) d Γ 1 ( x 1 ) d Γ 2 ( x 2 ) , if x V ( Γ 1 ) and y V ( Γ 2 ) , 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | d Γ 3 ( x 3 ) , if x E ( Γ 1 ) and y V ( Γ 3 ) , m 2 + n 1 n 2 n 2 2 + 2 d Γ 1 ( x 1 ) , if x V ( Γ 1 ) and y E ( Γ 1 ) .

  6. m y ( e = xy | ( Γ 1 𝒮 ( Γ 2 𝒱 Γ 3 E ) ) = { n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | + d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) , if xy E ( Γ 2 ) , m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | + d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) , if xy E ( Γ 3 ) , 2 m 1 + n 1 1 2 d Γ 1 ( x 1 ) , + d Γ 2 ( x 2 ) , if x V ( Γ 1 ) and y V ( Γ 2 ) , 3 m 1 1 ( d Γ 1 ( x 1 ) + d Γ 1 ( x 1 ) ) + d Γ 3 ( x 3 ) , if x E ( Γ 1 ) and y V ( Γ 3 ) , m 3 + m 1 n 3 + d Γ 1 ( x 1 ) , if x V ( Γ 1 ) and y = xz E ( Γ 1 ) .

6 Main results

Now we proceed towards the main calculations of several Szeged and PI-type indices of SVE join of graphs. First we calculate the vertex PI and vertex Szeged indices of SVE join of graphs.

6.1 Vertex Padmakar-Ivan and vertex Szeged indices of SVE

Theorem 6.1

Let Γ1, Γ2, and Γ3 be three graphs. Then:

P I v ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = M 1 ( Γ 2 ) + M 1 ( Γ 3 ) 2 m 2 | N Γ 2 ( x 2 x 2 ) | 2 m 3 | N Γ 3 ( x 3 x 3 ) | + ( n 1 n 2 + n 3 m 1 + n 1 m 1 ) ( n 1 + n 2 + n 3 + m 1 ) 2 n 1 m 2 2 m 1 m 3 .

Proof

P I v ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = uv E ( Γ 2 ) ( d Γ 2 ( x 2 ) | N Γ 2 ( x 2 x 2 ) | + d Γ 2 ( x 2 ) | N Γ 2 ( x 2 x 2 ) | ) + uv E ( Γ 3 ) ( d Γ 3 ( x 3 ) | N Γ 3 ( x 3 x 3 ) | + d Γ 3 ( x 3 ) | N Γ 3 ( x 3 x 3 ) | ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( n 2 d Γ 2 ( x 2 ) + n 3 + d Γ 1 ( x 1 ) + n 1 d Γ 1 ( x 1 ) + m 1 ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( n 3 d Γ 3 ( x 3 ) + 2 + n 2 + n 1 + m 1 2 ) + x 1 V ( Γ 1 ) x 1 E ( Γ 1 ) ( n 2 + n 1 2 + d Γ 1 ( x 1 ) + m 1 + n 3 + 2 d Γ 1 ( x 1 ) ) = uv E ( Γ 2 ) ( d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) ) 2 uv E ( Γ 2 ) | N Γ 2 ( x 2 x 2 ) | + uv E ( Γ 3 ) ( d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ) 2 uv E ( Γ 3 ) | N Γ 3 ( x 3 x 3 ) | + n 1 n 2 ( n 1 + n 2 + n 3 + m 1 ) n 1 x 2 V ( Γ 2 ) d Γ 2 ( x 2 ) + m 1 n 3 ( n 1 + n 2 + n 3 + m 1 ) m 1 x 3 V ( Γ 2 ) ω Γ 2 ( x 3 ) + n 1 m 1 ( n 1 + n 2 + n 3 + m 1 ) = M 1 ( Γ 2 ) + M 1 ( Γ 3 ) 2 m 2 | N Γ 2 ( x 2 x 2 ) | 2 m 3 | N Γ 3 ( x 3 x 3 ) | + ( n 1 n 2 + n 3 m 1 + n 1 m 1 ) ( n 1 + n 2 + n 3 + m 1 ) 2 n 1 m 2 2 m 1 m 3 .

This completes the proof.

Theorem 6.2

Let Γ1, Γ2, and Γ3 be three graphs. Then:

S z v ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = M 2 ( Γ 2 ) + M 2 ( Γ 3 ) | N Γ 2 ( x 2 x 2 ) | M 1 ( Γ 2 ) | N Γ 3 ( x 3 x 3 ) | M 1 ( Γ 3 ) ( n 2 + m 1 ) M 1 ( Γ 1 ) + m 2 | N Γ 2 ( x 2 x 2 ) | 2 + m 3 | N Γ 3 ( x 3 x 3 ) | 2 + n 1 n 2 ( n 2 + n 3 ) ( n 1 + m 1 ) + 2 m 1 n 2 ( n 1 + m 1 n 2 n 3 ) 2 n 1 m 2 ( n 1 + m 1 ) + 4 m 1 m 2 + m 1 n 3 ( n 2 + n 3 + 2 ) ( m 1 + n 1 2 ) 2 m 1 m 3 ( n 1 + m 1 2 ) + n 1 m 1 ( n 1 + n 2 2 ) ( n 3 + m 1 + 2 ) + 2 m 1 2 ( n 2 + n 1 m 1 n 3 4 ) .

Proof

S z v ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = uv E ( Γ 2 ) ( d Γ 2 ( x 2 ) | N Γ 2 ( x 2 x 2 ) | ) ( d Γ 2 ( x 2 ) | N Γ 2 ( x 2 x 2 ) | ) + uv E ( Γ 3 ) ( d Γ 3 ( x 3 ) | N Γ 3 ( x 3 x 3 ) | ) ( d Γ 3 ( x 3 ) | N Γ 3 ( x 3 x 3 ) | ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( n 2 d Γ 2 ( x 2 ) + n 3 + d Γ 1 ( x 1 ) ) ( n 1 d Γ 1 ( x 1 ) + m 1 ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( n 3 d Γ 3 ( x 3 ) + 2 + n 2 ) ( n 1 + m 1 2 ) + x 1 V ( Γ 1 ) x 1 E ( Γ 1 ) ( n 2 + n 1 2 + d Γ 1 ( x 1 ) ) ( m 1 + n 3 + 2 d Γ 1 ( x 1 ) ) = uv E ( Γ 2 ) ( d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) | N Γ 2 ( x 2 x 2 ) | ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) ) + | N Γ 2 ( x 2 x 2 ) | 2 ) + uv E ( Γ 3 ) ( d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) | N Γ 3 ( x 3 x 3 ) | ( d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ) + | N Γ 3 ( x 3 x 3 ) | 2 ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( ( n 2 + n 3 ) ( n 1 + m 1 ) + ( n 1 + m 1 n 2 n 3 ) d Γ 1 ( x 1 ) ( n 1 + m 1 ) d Γ 2 ( x 2 ) ω Γ 1 2 ( x 1 ) + d Γ 1 ( x 1 ) d Γ 2 ( x 2 ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( n 1 + m 1 2 ) ( n 3 + n 2 + 2 ) ( n 1 + m 1 2 ) x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) d Γ 3 ( x 3 ) ) + x 1 V ( Γ 1 ) x 1 E ( Γ 1 ) ( ( n 2 + n 1 2 ) ( m 1 + n 3 + 2 ) ω Γ 1 2 ( x 1 ) ( n 2 + n 1 m 1 n 3 4 ) d Γ 1 ( x 1 ) ) = M 2 ( Γ 2 ) | N Γ 2 ( x 2 x 2 ) | M 1 ( Γ 2 ) + m 2 | N Γ 2 ( x 2 x 2 ) | 2 + M 2 ( Γ 3 ) | N Γ 3 ( x 3 x 3 ) | M 1 ( Γ 3 ) + m 3 | N Γ 3 ( x 3 x 3 ) | 2 + n 1 n 2 ( n 2 + n 3 ) ( n 1 + m 1 ) + 2 m 1 n 2 ( n 1 + m 1 n 2 n 3 ) 2 n 1 m 2 ( n 1 + m 1 ) n 2 M 1 ( Γ 1 ) + 4 m 1 m 2 + m 1 n 3 ( n 2 + n 3 + 2 ) ( m 1 + n 1 2 ) 2 m 1 m 3 ( n 1 + m 1 2 ) + n 1 m 1 ( n 1 + n 2 2 ) ( n 3 + m 1 + 2 ) m 1 M 1 ( Γ 1 ) + 2 m 1 2 ( n 2 + n 1 m 1 n 3 4 ) = M 2 ( Γ 2 ) + M 2 ( Γ 3 ) | N Γ 2 ( x 2 x 2 ) | M 1 ( Γ 2 ) | N Γ 3 ( x 3 x 3 ) | M 1 ( Γ 3 ) ( n 2 + m 1 ) M 1 ( Γ 1 ) + m 2 | N Γ 2 ( x 2 x 2 ) | 2 + m 3 | N Γ 3 ( x 3 x 3 ) | 2 + n 1 n 2 ( n 2 + n 3 ) ( n 1 + m 1 ) + 2 m 1 n 2 ( n 1 + m 1 n 2 n 3 ) 2 n 1 m 2 ( n 1 + m 1 ) + 4 m 1 m 2 + m 1 n 3 ( n 2 + n 3 + 2 ) ( m 1 + n 1 2 ) 2 m 1 m 3 ( n 1 + m 1 2 ) + n 1 m 1 ( n 1 + n 2 2 ) ( n 3 + m 1 + 2 ) + 2 m 1 2 ( n 2 + n 1 m 1 n 3 4 ) .

This completes the proof.

6.2 Edge Padmakar-Ivan and edge Szeged indices

In this section, we calculate the edge PI and edge Szeged indices of SVE join of graphs.

Theorem 6.3

Let Γ1, Γ2, and Γ3 be three graphs. Then:

P I e ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = 2 m 2 ( 2 n 1 + | N Γ 2 ( x 2 ) ) + 2 m 3 ( 2 ɛ 1 + | N Γ 3 ( x 3 ) | ) 4 m 2 | N Γ 2 ( x 2 x 2 ) | 4 m 3 | N Γ 3 ( x 3 x 3 ) | + ( 2 m 1 + n 1 n 2 ) | N Γ 2 ( x 2 ) | + ( 2 m 3 m 1 n 2 ) | N Γ 3 ( x 3 ) | + n 1 n 2 ( m 3 + n 2 + m 2 + 2 m 1 + n 1 2 ) + m 1 n 2 ( 2 n 2 + m 2 + 3 n 3 + m 3 + 3 m 1 2 ) + ( n 1 n 2 ) M 1 ( Γ 1 ) + n 1 m 1 ( m 2 + n 1 n 2 n 2 + m 3 + m 1 n 3 2 ) + 4 m 1 2 .

Proof

P I e ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = uv E ( Γ 2 ) ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | + d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) + n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | + d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) ) + uv E ( Γ 3 ) ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | + d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) + m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | + d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | + ( n 3 + 1 ) d Γ 1 ( x 1 ) d Γ 2 ( x 2 ) + 2 m 1 + n 1 1 2 d Γ 1 ( x 1 ) + d Γ 2 ( x 2 ) ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | d Γ 3 ( x 3 ) + 3 m 1 1 ( d Γ 1 ( x 1 ) + d Γ 1 ( x 1 ) ) + d Γ 3 ( x 3 ) + x 1 V ( Γ 1 ) x 1 x 1 E ( Γ 1 ) ( m 2 + n 1 n 2 n 2 2 + 2 d Γ 1 ( x 1 ) + m 3 + m 1 n 3 + d Γ 1 ( x 1 ) ) = 2 m 2 ( 2 n 1 + | N Γ 2 ( x 2 ) + | N Γ 2 ( x 2 ) | 2 | N Γ 2 ( x 2 x 2 ) | ) + 2 m 3 ( 2 ɛ 1 + | N Γ 3 ( x 3 ) | + | N Γ 3 ( x 3 ) | 2 | N Γ 3 ( x 3 x 3 ) | ) + n 1 n 2 ( m 3 + n 2 + m 2 + 2 m 1 + n 1 2 | N Γ 2 ( x 2 ) | ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( n 3 1 ) d Γ 1 ( x 1 ) + m 1 n 2 ( 2 n 2 + m 2 + n 3 + m 3 + 3 m 1 | N Γ 3 ( x 3 ) | ) x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( d Γ 1 ( x 1 ) + d Γ 1 ( x 1 ) ) + n 1 m 1 ( m 2 + n 1 n 2 n 2 + m 3 + m 1 n 3 2 ) + x 1 V ( Γ 1 ) x 1 E ( Γ 1 ) d Γ 1 ( x 1 ) + x 1 V ( Γ 1 ) x 1 x 1 E ( Γ 1 ) ( d Γ 1 ( x 1 ) + d Γ 1 ( x 1 ) ) = 2 m 2 ( 2 n 1 + | N Γ 2 ( x 2 ) ) + 2 m 3 ( 2 ɛ 1 + | N Γ 3 ( x 3 ) | ) 4 m 2 | N Γ 2 ( x 2 x 2 ) | 4 m 3 | N Γ 3 ( x 3 x 3 ) | + ( 2 m 1 + n 1 n 2 ) | N Γ 2 ( x 2 ) | + ( 2 m 3 m 1 n 2 ) | N Γ 3 ( x 3 ) | + n 1 n 2 ( m 3 + n 2 + m 2 + 2 m 1 + n 1 2 ) + m 1 n 2 ( 2 n 2 + m 2 + 3 n 3 + m 3 + 3 m 1 2 ) + ( n 1 n 2 ) M 1 ( Γ 1 ) + n 1 m 1 ( m 2 + n 1 n 2 n 2 + m 3 + m 1 n 3 2 ) + 4 m 1 2 .

This completes the proof.

Theorem 6.4

Let Γ1, Γ2, and Γ3 be three graphs. Then:

S z e ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = 2 ( M 1 ( Γ 2 ) + M 1 ( Γ 3 ) ) F ( Γ 2 ) F ( Γ 3 ) + m 2 ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | ) ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | ) + m 3 ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | ) ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | ) + n 1 n 2 ( m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | ) ( 2 m 1 + n 1 1 ) + 2 m 1 n 2 ( ( n 3 + 1 ) ( 2 m 1 + n 1 1 ) 2 ( m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | ) ) + 2 m 2 n 1 ( m 3 + n 2 + m 2 | N Γ 2 ( x 2 ) | 2 m 1 n 1 ) 2 n 2 ( n 3 + 1 ) M 1 ( Γ 1 ) + 4 m 1 m 2 ( n 3 + 3 ) n 1 M 1 ( Γ 2 ) + m 1 n 3 ( ( 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | ) ( 3 m 1 1 ) n 3 ( 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | ) M 1 ( Γ 1 ) + 2 m 1 m 3 ( 2 n 2 + m 2 + n 3 + m 3 3 m 1 + 2 | N Γ 3 ( x 3 ) | ) + 2 m 3 M 1 ( Γ 1 ) m 1 M 1 ( Γ 3 ) + n 1 m 1 ( m 2 + n 1 n 2 n 2 2 ) ( m 3 + m 1 n 3 ) + n 1 ( m 2 + n 1 n 2 n 2 2 ) x 1 x 1 E ( Γ 1 ) d Γ 1 ( x 1 ) + 4 m 1 2 ( m 3 + m 1 n 3 ) + 2 n 1 M 2 ( Γ 1 ) .

Proof

S z e ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = uv E ( Γ 2 ) ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | + d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) ) ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | + d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) ) + uv E ( Γ 3 ) ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | + d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) ) ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | + d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | + ( n 3 + 1 ) d Γ 1 ( x 1 ) d Γ 2 ( x 2 ) ) ( 2 m 1 + n 1 1 2 d Γ 1 ( x 1 ) + d Γ 2 ( x 2 ) ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | d Γ 3 ( x 3 ) ) ( 3 m 1 1 ( d Γ 1 ( x 1 ) + d Γ 1 ( x 1 ) ) + d Γ 3 ( x 3 ) + x 1 V ( Γ 1 ) x 1 x 1 E ( Γ 1 ) ( m 2 + n 1 n 2 n 2 2 + 2 d Γ 1 ( x 1 ) ) ( m 3 + m 1 n 3 + d Γ 1 ( x 1 ) ) = uv E ( Γ 2 ) ( ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | ) ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | ) + ( d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) ) ( | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 ) | ) ( d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) ) 2 ) + uv E ( Γ 3 ) ( ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | ) ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | ) + ( d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) ) ( | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 ) | ) + ( d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) ) 2 ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( ( m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | ) ( 2 m 1 + n 1 1 ) + ( ( n 3 + 1 ) ( 2 m 1 + n 1 1 ) 2 ( m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | ) ) d Γ 1 ( x 1 ) + ( m 3 + n 2 + m 2 | N Γ 2 ( x 2 ) | 2 m 1 n 1 ) d Γ 2 ( x 2 ) 2 ( n 3 + 1 ) ω Γ 1 2 ( x 1 ) + ( n 3 + 3 ) d Γ 1 ( x 1 ) d Γ 2 ( x 2 ) ω Γ 2 2 ( x 2 ) ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( ( 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | ) ( 3 m 1 1 ) ( 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | ) ( d Γ 1 ( x 1 ) + d Γ 1 ( x 1 ) ) + ( 2 n 2 + m 2 + n 3 + m 3 3 m 1 + 2 | N Γ 3 ( x 3 ) | ) d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ( d Γ 1 ( x 1 ) + d Γ 1 ( x 1 ) ) ω Γ 3 2 ( x 3 ) ) + x 1 V ( Γ 1 ) x 1 x 1 E ( Γ 1 ) ( ( m 2 + n 1 n 2 n 2 2 ) ( m 3 + m 1 n 3 ) + ( m 2 + n 1 n 2 n 2 2 ) d Γ 1 ( x 1 ) + 2 ( m 3 + m 1 n 3 ) d Γ 1 ( x 1 ) + 2 d Γ 1 ( x 1 ) d Γ 1 ( x 1 ) ) = 2 ( M 1 ( Γ 2 ) + M 1 ( Γ 3 ) ) F ( Γ 2 ) F ( Γ 3 ) + m 2 ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | ) ( n 1 + | N Γ 2 ( x 2 ) | | N Γ 2 ( x 2 x 2 ) | ) + m 3 ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | ) ( m 1 + | N Γ 3 ( x 3 ) | | N Γ 3 ( x 3 x 3 ) | ) + n 1 n 2 ( m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | ) ( 2 m 1 + n 1 1 ) + 2 m 1 n 2 ( ( n 3 + 1 ) ( 2 m 1 + n 1 1 ) 2 ( m 3 + n 2 1 + m 2 | N Γ 2 ( x 2 ) | ) ) + 2 m 2 n 1 ( m 3 + n 2 + m 2 | N Γ 2 ( x 2 ) | 2 m 1 n 1 ) 2 n 2 ( n 3 + 1 ) M 1 ( Γ 1 ) + 4 m 1 m 2 ( n 3 + 3 ) n 1 M 1 ( Γ 2 ) + m 1 n 3 ( ( 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | ) ( 3 m 1 1 ) n 3 ( 2 n 2 + m 2 + n 3 + m 3 + 1 | N Γ 3 ( x 3 ) | ) M 1 ( Γ 1 ) + 2 m 1 m 3 ( 2 n 2 + m 2 + n 3 + m 3 3 m 1 + 2 | N Γ 3 ( x 3 ) | ) + 2 m 3 M 1 ( Γ 1 ) m 1 M 1 ( Γ 3 ) + n 1 m 1 ( m 2 + n 1 n 2 n 2 2 ) ( m 3 + m 1 n 3 ) + n 1 ( m 2 + n 1 n 2 n 2 2 ) x 1 x 1 E ( Γ 1 ) d Γ 1 ( x 1 ) + 4 m 1 2 ( m 3 + m 1 n 3 ) + 2 n 1 M 2 ( Γ 1 ) .

This completes the proof.

6.3 Weighted vertex Padmakar-Ivan and weighted vertex Szeged indices

Now we calculate the weighted versions of vertex PI and vertex Szeged indices of SVE join of graph.

Theorem 6.5

Let Γ1, Γ2, and Γ3 be three graphs. Then:

wP I v ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = F ( Γ 2 ) + F ( Γ 3 ) + 2 ( M 2 ( Γ 2 ) + M 2 ( Γ 3 ) ) ( 2 | N Γ 2 ( x 2 x 2 ) | n 1 ) M 1 ( Γ 2 ) ( 2 | N Γ 3 ( x 3 x 3 ) | m 1 ) M 1 ( Γ 3 ) 2 n 1 m 2 ( 2 | N Γ 2 ( x 2 x 2 ) | + n 1 + n 2 ) 2 m 1 m 3 ( 2 | N Γ 3 ( x 3 x 3 ) | n 1 n 1 + 2 ) 4 m 1 m 2 + ( n 1 + n 2 + n 3 + m 1 ) ( m 1 n 3 ( n 3 + n 1 + m 1 + 2 ) + n 1 n 2 ( n 1 + n 2 + m + 1 ) + 2 m 1 ( n 1 + m 1 ) + 2 ( n 1 m 2 + n 2 m 1 ) ) .

Proof

wP I v ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = uv E ( Γ 2 ) ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) + 2 n 1 ) ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) 2 | N Γ 2 ( x 2 x 2 ) | ) + uv E ( Γ 3 ) ( d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) + 2 m 1 ) ( d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) 2 | N Γ 3 ( x 3 x 3 ) | ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( d Γ 1 ( x 1 ) + d Γ 2 ( x 2 ) + n 1 + n 2 ) ( n 1 + n 2 + n 3 + m 1 d Γ 2 ( x 2 ) ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( n 3 + m 1 + 2 + d Γ 3 ( x 3 ) ) ( n 1 + n 2 + n 3 + m 1 d Γ 3 ( x 3 ) ) + x 1 V ( Γ 1 ) x 1 E ( Γ 1 ) ( d Γ 1 ( x 1 ) + n 2 + n 3 + 2 ) ( n 1 + n 2 + n 3 + m 1 ) = uv E ( Γ 2 ) ( ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) ) 2 2 ( | N Γ 2 ( x 2 x 2 ) | n 1 ) ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) ) 4 n 1 | N Γ 2 ( x 2 x 2 ) | ) + uv E ( Γ 3 ) ( ( d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ) 2 2 ( | N Γ 3 ( x 3 x 3 ) | m 1 ) ( d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ) 4 m 1 | N Γ 3 ( x 3 x 3 ) | ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( ( n 1 + n 2 + n 3 + m 1 ) ( n 1 + n 2 ) ( n 1 + n 2 ) d Γ 2 ( x 2 ) d Γ 1 ( x 1 ) d Γ 2 ( x 2 ) ω Γ 2 2 ( x 2 ) + ( n 1 + n 2 + n 3 + m 1 ) ( d Γ 1 ( x 1 ) + d Γ 2 ( x 2 ) ) ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( ( n 3 + m 1 + 2 ) ( n 1 + n 2 + n 3 + m 1 ) + ( n 2 + n 1 2 ) d Γ 3 ( x 3 ) ω Γ 3 2 ( x 3 ) ) + ( n 1 + n 2 + n 3 + m 1 ) x 1 V ( Γ 1 ) x 1 E ( Γ 1 ) ( d Γ 1 ( x 1 ) + ( n 2 + n 3 + 2 ) ) = F ( Γ 2 ) + 2 M 2 ( Γ 2 ) 2 ( | N Γ 2 ( x 2 x 2 ) | n 1 ) M 1 ( Γ 2 ) 4 n 1 m 2 | N Γ 2 ( x 2 x 2 ) | + F ( Γ 3 ) + 2 M 2 ( Γ 3 ) 2 ( | N Γ 3 ( x 3 x 3 ) | m 1 ) M 1 ( Γ 3 ) 4 m 1 m 3 | N Γ 3 ( x 3 x 3 ) | + n 1 n 2 ( n 1 + n 2 + n 3 + m 1 ) ( n 1 + n 2 ) 2 n 1 m 2 ( n 1 + n 2 ) 4 m 1 m 2 n 1 M 1 ( Γ 2 ) + 2 ( n 1 + n 2 + n 3 + m 1 ) ( n 1 m 2 + n 2 m 1 ) + m 1 n 3 ( n 3 + m 1 + 2 ) ( n 1 + n 2 + n 3 + m 1 ) + 2 m 1 m 3 ( n 2 + n 1 2 ) m 1 M 1 ( Γ 3 ) + m 1 ( n 1 + n 2 + n 3 + m 1 ) ( n 1 n 2 + n 1 n 3 + 2 n 1 + 2 m 1 ) = F ( Γ 2 ) + F ( Γ 3 ) + 2 ( M 2 ( Γ 2 ) + M 2 ( Γ 3 ) ) 2 ( | N Γ 2 ( x 2 x 2 ) | n 1 ) M 1 ( Γ 2 ) ( 2 | N Γ 3 ( x 3 x 3 ) | m 1 ) M 1 ( Γ 3 ) 2 n 1 m 2 ( 2 | N Γ 2 ( x 2 x 2 ) | + n 1 + n 2 ) 2 m 1 m 3 ( 2 | N Γ 3 ( x 3 x 3 ) | n 1 n 1 + 2 ) 4 m 1 m 2 + ( n 1 + n 2 + n 3 + m 1 ) ( m 1 n 3 ( n 3 + n 1 + m 1 + 2 ) + n 1 n 2 ( n 1 + n 2 + m + 1 ) + 2 m 1 ( n 1 + m 1 ) + 2 ( n 1 m 2 + n 2 m 1 ) ) .

This completes the proof.

Theorem 6.6

Let Γ1, Γ2, and Γ3 be three graphs. Then:

wSz v ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = Z 2 , 1 ( Γ 2 ) + Z 2 , 1 ( Γ 3 ) | N Γ 2 ( x 2 x 2 ) | F ( Γ 2 ) | N Γ 3 ( x 3 x 3 ) | F ( Γ 3 ) ( n 2 + m 1 ) F ( Γ 1 ) + 2 ( n 1 | N Γ 2 ( x 2 x 2 ) | ) M 2 ( Γ 2 ) + 2 ( m 1 | N Γ 3 ( x 3 x 3 ) | M 2 ( Γ 3 ) ( n 2 ( 2 n 2 + n 3 + 3 m 1 ) + m 1 ( n 1 2 m 1 ) ) M 1 ( Γ 1 ) ( | N Γ 2 ( x 2 x 2 ) | ( | N Γ 2 ( x 2 x 2 ) | + 2 n 2 ) + n 1 + n 1 m 1 + 2 m 1 ) M 1 ( Γ 2 ) ( | N Γ 2 ( x 2 x 2 ) | ( | N Γ 2 ( x 2 x 2 ) | + 2 m 2 ) + m 1 ( n 1 + m 1 2 ) ) M 1 ( Γ 3 ) + 2 m 1 n 2 ( n 1 n 2 + m 1 n 3 + n 2 2 n 2 n 3 n 1 2 n 1 m 1 ) + 2 n 1 m 2 ( ( n 1 + m 1 ) ( n 1 + 2 n 2 + n 3 ) | N Γ 2 ( x 2 x 2 ) | ) + n 1 n 2 ( n 1 + n 2 ) ( n 2 + n 3 ) ( n 1 + m 1 ) + m 1 n 3 ( n 1 + m 1 2 ) ( n 1 + m 1 + 2 ) ( n 2 + n 3 + 2 ) 2 m 1 m 3 ( ( n 1 + m 1 2 ) ( m 1 n 2 ) | N Γ 3 ( x 3 x 3 ) | + n 1 m 1 ( n 3 + m 1 + 2 ) ( n 2 + n 3 + 2 ) ( n 1 + n 2 2 ) + 2 m 1 2 ( n 3 + m 1 + 2 ) ( n 1 + 2 n 2 + n 3 ) .

Proof

wSz v ( Γ 1 S ( Γ 2 V Γ 3 I ) ) = uv E ( Γ 2 ) ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) + 2 n 1 ) ( d Γ 2 ( x 2 ) | N Γ 2 ( x 2 x 2 ) | ) ( d Γ 2 ( x 2 ) | N Γ 2 ( x 2 x 2 ) | ) + uv E ( Γ 3 ) ( d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) + 2 m 1 ) ( d Γ 3 ( x 3 ) | N Γ 3 ( x 3 x 3 ) | ) ( d Γ 3 ( x 3 ) | N Γ 3 ( x 3 x 3 ) | ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( d Γ 1 ( x 1 ) + d Γ 2 ( x 2 ) + n 1 + n 2 ) ( n 2 + n 3 + d Γ 1 ( x 1 ) d Γ 2 ( x 2 ) ) ( n 1 + m 1 d Γ 1 ( x 1 ) ) + x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( n 3 + m 1 + 2 + d Γ 3 ( x 3 ) ) ( n 2 + n 3 + 2 d Γ 3 ( x 3 ) ) ( n 1 + m 1 2 ) + x 1 V ( Γ 1 ) x 1 E ( Γ 1 ) ( d Γ 1 ( x 1 ) + n 2 + n 3 + 2 ) ( n 2 + n 1 2 + d Γ 1 ( x 1 ) ) ( n 3 + m 1 + 2 d Γ 1 ( x 1 ) ) = uv E ( Γ 2 ) ( ( ω Γ 2 2 ( x 2 ) d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) ω Γ 2 2 ( x 2 ) ) | N Γ 2 ( x 2 x 2 ) | ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) ) 2 | N Γ 2 ( x 2 x 2 ) | 2 ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) ) + 2 n 1 d Γ 2 ( x 2 ) d Γ 2 ( x 2 ) 2 n 1 | N Γ 2 ( x 2 x 2 ) | ( d Γ 2 ( x 2 ) + d Γ 2 ( x 2 ) ) 2 n 1 | N Γ 2 ( x 2 x 2 ) | 2 ) + uv E ( Γ 3 ) ( ( ω Γ 3 2 ( x 3 ) d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ω Γ 3 2 ( x 3 ) ) | N Γ 3 ( x 3 x 3 ) | ( d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ) 2 | N Γ 3 ( x 3 x 3 ) | 2 d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ) + 2 m 1 d Γ 3 ( x 3 ) d Γ 3 ( x 3 ) 2 m 1 | N Γ 3 ( x 3 x 3 ) | d Γ 3 ( x 3 ) + d Γ 3 ( x 3 ) ) 2 m 1 | N Γ 3 ( x 3 x 3 ) | 2 ) + x 1 V ( Γ 1 ) x 2 V ( Γ 2 ) ( ω Γ 1 3 ( x 1 ) ( 2 n 2 + n 3 m 1 ) ω Γ 1 2 ( x 1 ) ( n 1 + m 1 ) ω Γ 2 2 ( x 2 ) + d Γ 1 ( x 1 ) ω Γ 2 2 ( x 2 ) + ( ( n 2 + n 3 ) ( n 1 + m 1 ) ( n 2 + n 3 n 1 m 1 ) ( n 1 + n 2 ) ) d Γ 1 ( x 1 ) + ( n 1 + m 1 ) ( n 1 + 2 n 2 + n 3 ) d Γ 2 ( x 2 ) ( n 3 n 1 ) d Γ 1 ( x 1 ) d Γ 2 ( x 2 ) + ( n 1 + n 2 ) ( n 2 + n 3 ) ( n 1 + m 1 ) ) + ( n 1 + m 1 2 ) x 1 E ( Γ 1 ) x 3 V ( Γ 3 ) ( ( n 3 + m 1 + 2 ) ( n 2 + n 3 + 2 ) ( m 1 n 2 ) d Γ 3 ( x 3 ) ω Γ 3 2 ( x 3 ) ) + x 1 V ( Γ 1 ) x 1 E ( Γ 1 ) ( ( n 2 + n 3 + 2 ) ( n 2 + n 1 2 ) ( n 3 + m 1 + 2 ) + ( ( n 1 + 2 n 2 + n 3 ) ( n 3 + m 1 + 2 ) ( n 2 + n 1 2 ) ( n 2 + n 3 + 2 ) ) d Γ 1 ( x 1 ) + ( m 1 n 1 2 n 2 + 2 ) ω Γ 1 2 ( x 1 ) ω Γ 1 3 ( x 1 ) ) = Z 2 , 1 ( Γ 2 ) + Z 2 , 1 ( Γ 3 ) | N Γ 2 ( x 2 x 2 ) | F ( Γ 2 ) | N Γ 3 ( x 3 x 3 ) | F ( Γ 3 ) ( n 2 + m 1 ) F ( Γ 1 ) + 2 ( n 1 | N Γ 2 ( x 2 x 2 ) | ) M 2 ( Γ 2 ) + 2 ( m 1 | N Γ 3 ( x 3 x 3 ) | M 2 ( Γ 3 ) ( n 2 ( 2 n 2 + n 3 + 3 m 1 ) + m 1 ( n 1 2 m 1 ) ) M 1 ( Γ 1 ) ( | N Γ 2 ( x 2 x 2 ) | ( | N Γ 2 ( x 2 x 2 ) | + 2 n 2 ) + n 1 + n 1 m 1 + 2 m 1 ) M 1 ( Γ 2 ) ( | N Γ 2 ( x 2 x 2 ) | ( | N Γ 2 ( x 2 x 2 ) | + 2 m 2 ) + m 1 ( n 1 + m 1 2 ) ) M 1 ( Γ 3 ) + 2 m 1 n 2 ( n 1 n 2 + m 1 n 3 + n 2 2 n 2 n 3 n 1 2 n 1 m 1 ) + 2 n 1 m 2 ( ( n 1 + m 1 ) ( n 1 + 2 n 2 + n 3 ) | N Γ 2 ( x 2 x 2 ) | ) + n 1 n 2 ( n 1 + n 2 ) ( n 2 + n 3 ) ( n 1 + m 1 ) + m 1 n 3 ( n 1 + m 1 2 ) ( n 1 + m 1 + 2 ) ( n 2 + n 3 + 2 ) 2 m 1 m 3 ( ( n 1 + m 1 2 ) ( m 1 n 2 ) | N Γ 3 ( x 3 x 3 ) | + n 1 m 1 ( n 3 + m 1 + 2 ) ( n 2 + n 3 + 2 ) ( n 1 + n 2 2 ) + 2 m 1 2 ( n 3 + m 1 + 2 ) ( n 1 + 2 n 2 + n 3 ) .

This completes the proof.

7 Conclusion

The operation of subdivision vertex-edge join of graphs is also known as SVE join of graphs. We computed the several distance based topological descriptors of graphs, namely vertex Padmakar-Ivan (PIv) index, vertex Szeged (Szv) index, edge Padmakar-Ivan (PIe) index, edge Szeged (Sze) index, weighted vertex PadmakarIvan (wPIv) index, and weighted vertex Szeged (wSzv) index of SVE join of graphs. These results are helpful for people who are interested in applied chemistry for the computation of SVE join of graphs.

Acknowledgement

The authors are very grateful to the referees for their careful reading with corrections and useful comments, which improved this work very much.

  1. Funding information: Authors state no funding involved

  2. Author contributions: Syed Sheraz Asghar: writing – original draft; Muhammad Ahsan Binyamin: writing – review and editing; Shehnaz Akhtar and Mehar Ali Malik: methodology; Yu-Ming Chu: formal analysis, visualization, resources.

  3. Conflict of interest: Authors state no conflict of interest.

References

Ashrafi A.R., Doslić T., Hamzeh A., The Zagreb coindices of graph operations. Discrete Appl. Math., 2010, 158, 1571–1578.10.1016/j.dam.2010.05.017Search in Google Scholar

Azari M., Iranmanesh A., Computing the eccentric-distance sum for graph operations. Discrete Appl. Math., 2013, 161, 2827–2840.10.1016/j.dam.2013.06.003Search in Google Scholar

Bajaj S., Sambi S.S., Gupta S., Madan A.K., Model for prediction of anti-HIV activity of 2-pyridinone derivatives using novel topological descriptor. QSAR Comb. Sci., 2006, 25, 813–823.10.1002/qsar.200430918Search in Google Scholar

Balaban A.T., Motoc I., Bonchev D., Mekenyan O. Topological indices for structure-activity correlations. In Steric effects in drug design. Springer, Berlin, Heidelberg, 1983.10.1007/BFb0111212Search in Google Scholar

Balasubramanian K., Applications of combinatorics and graph theory to spectrosocpy and quantum chemistry. Chem. Rev., 1985a, 85(6), 599–618.10.1021/cr00070a005Search in Google Scholar

Balasubramanian K., Characteristic polynomials of organic polymer sand periodic structure. J. Comput. Chem., 1985b, 6(6), 656–661.10.1002/jcc.540060620Search in Google Scholar

Basak S.C., Grunwald G.D., Gute B.D., Balasubramanian K., Opitz D., Use of statistical and neural net approaches in predicting toxicity of chemicals. J. Chem. Inf. Comput. Sci., 2000, 40(4), 885–890.10.1021/ci9901136Search in Google Scholar PubMed

Das K.C., Yurttas A., Togan M., Cevik A.S., Cangul I.N., The multiplicative Zagreb indices of graph operations. J. Inequal. Appl., 2013, 90, 1–14.10.1186/1029-242X-2013-90Search in Google Scholar

De N., Nayeem S. M.A., Pal A., The F-coindex of some graph operations. SpringerPlus, 2016, 5(1), 221.10.1186/s40064-016-1864-7Search in Google Scholar PubMed PubMed Central

Devillers J., Balaban A.T., Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Amsterdam, 1999.10.1201/9781482296945Search in Google Scholar

Diudea M.V., QSPR/QSAR Studies by Molecular Descriptors. Huntington, New York, Nova, 2001.Search in Google Scholar

Dobrynin A.A., Entringer R., Gutman I., Wiener index of trees: Theory and applications. Acta Appl. Math., 2001, 66, 211–249.10.1023/A:1010767517079Search in Google Scholar

Gupta S., Singh M., Madan A.K., Application of graph theory: Relationship of eccentric connectivity index and Wiener's index with anti-inflammatory activity. J. Math. Anal. Appl., 2002, 266, 259–268.10.1006/jmaa.2000.7243Search in Google Scholar

Gutman I., A formula for the Wiener number of trees and its extension to graphs containing cycles. Graph Theory Notes NY, 1994, 27, 9–15.Search in Google Scholar

Gutman I., Ashrafi A.R., The edge version of the Szeged index. Croat. Chem. Acta, 81, 2008, 81, 263–266.Search in Google Scholar

Gutman I., Khadikar P.V., Rajput P.V., Karmarkar S., The Szeged index of polyacenes. J. Ser. Chem. Soc., 1995, 60, 759–764.Search in Google Scholar

Hansch C., Leo L., Exploring QSAR fundamentals and applicability in chemistry and biology. Amererican Chemical Society, Washington DC, 1996.Search in Google Scholar

Ilic A., Milosavljevic N., The weighted vertex PI index. Math. Comp. Model., 2013, 57(3), 623–631.10.1016/j.mcm.2012.08.001Search in Google Scholar

Imran M., Baig A. Q., Ali H., Rehman S. U., On topological properties of poly honeycomb networks. Period. Math. Hung., 2016, 73(1), 100–119.10.1007/s10998-016-0132-5Search in Google Scholar

Khadikar P.V., Karmarkar S., Agrawal V.K., A novel PI index and its applications to QSPR/QSAR studies. J. Chem. Inf. Comput. Sci., 2001, 41(4), 934–949.10.1021/ci0003092Search in Google Scholar

Khalifeh M. H., Yousefi-Azaria H., Ashrafi A.R., Vertex and edge PI indices of Cartesian product graphs. Discrete Appl. Math., 2008, 156, 1780–1789.10.1016/j.dam.2007.08.041Search in Google Scholar

Khalifeh M.H., Yousefi-Azaria H., Ashrafi A.R., The first and second Zagreb indices of some graph operations. Discrete Appl. Math., 2009, 157, 804–811.10.1016/j.dam.2008.06.015Search in Google Scholar

Klavžar S., Rajapakse A., Gutman I., The Szeged and the Wiener index of graphs. Appl. Math. Lett., 1996, 9(5), 45–49.10.1016/0893-9659(96)00071-7Search in Google Scholar

Liu J.B., Ali B., Malik M.A., Siddiqui H.M.A., Imran M., Reformulated Zagreb indices of some derived graphs. Mathematics, 2019, 7(4), 366.10.3390/math7040366Search in Google Scholar

Nagarajan S., Pattabiraman K., Chandrasekharan M., Weighted Szeged Index of Generalized Hierarchical Product of Graphs. Gen. Math. Notes, 2014, 23(2), 85–95.Search in Google Scholar

Pattabiraman K., Kandan P., Weighted Szeged indices of some graph operations. Transactions on Combinatorics, 2016, 5(1), 25–35.Search in Google Scholar

Pattabiraman K., Paulraja P., Vertex and edge Padmakar-Ivan indices of the generalized hierarchical product of graphs. Discrete Appl. Math., 2012, 160, 1376–1384.10.1016/j.dam.2012.01.021Search in Google Scholar

Platt J.R., Prediction of isomeric differences in paraffin properties. J. Chem. Phys., 1952, 56, 328–336.10.1021/j150495a009Search in Google Scholar

Randić M., Wiener-Hosoya index: A novel graph theoretical molecular descriptor. J. Chem. Inf. Comput. Sci., 2004, 44, 373–377.10.1021/ci030425fSearch in Google Scholar PubMed

Siddiqui H.M.A., Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs. Hacet. J. Math. Stat., 2020, 49(2), 754–765.10.15672/hujms.623990Search in Google Scholar

Tavakoli M., Rahbarnia F., The vertex and edge pi indices of generalized hierarchical product of graphs. J. Appl. Math. Inf., 2013, 31(3–4), 469–477.10.14317/jami.2013.469Search in Google Scholar

Wen F., Zhang Y., Li M., Spectra of subdivision vertex-edge join of three graphs. Mathematics, 2019, 7, 171.10.3390/math7020171Search in Google Scholar

Wiener M., Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947, 69, 17–20.10.1021/ja01193a005Search in Google Scholar PubMed

Xu J., Liu J.B., Bilal A., Ahmad U., Siddiqui H.M.A., Ali B., et al., Distance degree index of some derived graphs. Mathematics, 2019, 7(3), 283.10.3390/math7030283Search in Google Scholar

Yang H., Imran M., Akhter S., Iqbal Z., Siddiqui M.K., On distance-based topological descriptors of subdivision vertex-edge join of three graphs. IEEE Access, 2019, 7, 143381–143391.10.1109/ACCESS.2019.2944860Search in Google Scholar

Yousefi-Azari H., Manoochehrian V., Ashrafi A.R., The PI index of product graphs. Appl. Math. Lett., 2008, 21, 624–627.10.1016/j.aml.2007.07.015Search in Google Scholar

Received: 2020-11-12
Accepted: 2021-03-09
Published Online: 2021-04-23

© 2021 Syed Sheraz Asghar et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/mgmc-2021-0011/html
Scroll to top button