Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Weyl, Dirac and high-fold chiral fermions in topological quantum matter

Abstract

Quantum materials hosting Weyl fermions have opened a new era of research in condensed matter physics. First proposed in 1929 in the context of particle physics, Weyl fermions have yet to be observed as elementary particles. In 2015, Weyl fermions were detected as collective electronic excitations in the strong spin–orbit coupled material tantalum arsenide, TaAs. This discovery was followed by a flurry of experimental and theoretical explorations of Weyl phenomena in materials. Weyl materials naturally lend themselves to the exploration of the topological index associated with Weyl fermions and their divergent Berry curvature field, as well as the topological bulk–boundary correspondence, giving rise to protected conducting surface states. Here, we review the broader class of Weyl topological phenomena in materials, starting with the observation of emergent Weyl fermions in the bulk and Fermi arc states on the surface of the TaAs family of crystals by photoemission spectroscopy. We then discuss several exotic optical and magnetic responses observed in these materials, as well as progress in developing related chiral materials. We discuss the conceptual development of high-fold chiral fermions, which generalize Weyl fermions, and we review the observation of high-fold chiral fermion phases by taking the rhodium silicide, RhSi, family of crystals as a prime example. Lastly, we discuss recent advances in Weyl line phases in magnetic topological materials. With this Review, we aim to provide an introduction to the basic concepts underlying Weyl physics in condensed matter, and to representative materials and their electronic structures and topology as revealed by spectroscopic studies. We hope this work serves as a guide for future theoretical and experimental explorations of chiral fermions and related topological quantum systems with potentially enhanced functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topology and classification of Weyl fermions.
Fig. 2: Weyl semimetal states in the noncentrosymmetric TaAs family of crystals.
Fig. 3: Chern numbers and Fermi arc surface states.
Fig. 4: Type-II Weyl semimetals: LaAlGe and MoxW1−xTe2.
Fig. 5: Topological chiral crystals in the RhSi family.
Fig. 6: Topological nodal lines in PbTaSe2 and ZrSiS.
Fig. 7: Magnetic Weyl lines and drumhead surface states in Co2MnGa.
Fig. 8: Magnetic tunability of topological kagome magnets.

Similar content being viewed by others

References

  1. Weyl, H. Elektron und gravitation. I. Z. Phys. 56, 330–352 (1929).

    Article  Google Scholar 

  2. Wilczek, F. Why are there analogies between condensed matter and particle theory? Phys. Today 51, 11–13 (1998).

    CAS  Google Scholar 

  3. Anderson, P. W. Concepts in Solids: Lectures on the Theory of Solids (World Scientific, 1997).

  4. Thouless, D. J. Topological Quantum Numbers in Nonrelativistic Physics (World Scientific, 1998).

  5. Neto, A. H. C. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  6. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  7. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  CAS  Google Scholar 

  8. Vafek, O. & Vishwanath, A. Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).

    Article  CAS  Google Scholar 

  9. Hasan, M. Z., Xu, S.-Y. & Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals. Phys. Scr. 2015, 014001 (2015).

    Article  CAS  Google Scholar 

  10. Turner, A. M. & Vishwanath, A. in Topological Insulators: Fundamentals and Perspectives (eds Ortmann, F., Roche, S. & Valenzuela, S. O.) (Wiley, 2015).

  11. Bansil, A., Lin, H. & Das, T. Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    Article  Google Scholar 

  12. Weng, H., Dai, X. & Fang, Z. Topological semimetals predicted from first-principles calculations. J. Phys. Condens. Matter 28, 303001 (2016).

    Article  CAS  Google Scholar 

  13. Haldane, F. D. M. Nobel lecture: Topological quantum matter. Rev. Mod. Phys. 89, 040502 (2017).

    Article  Google Scholar 

  14. Weyl, H. Gesammelte Abhandlungen II (American Philosophical Society, 1943).

  15. von Neumann, J. & Wigner, E. P. Über das verhalten von eigenwerten bei adiabatischen prozessen. Phys. Z. 30, 467–470 (1929).

    Google Scholar 

  16. Herring, C. Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52, 365–373 (1937).

    Article  CAS  Google Scholar 

  17. Abrikosov, A. A. & Beneslavskii, S. D. Some properties of gapless semiconductors of the second kind. J. Low Temp. Phys. 5, 141–154 (1971).

    Article  Google Scholar 

  18. Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

    Article  Google Scholar 

  19. Volovik, G. E. The Universe in a Helium Droplet (Clarendon Press, 2003).

  20. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    Article  CAS  Google Scholar 

  21. Jia, S., Xu, S.-Y. & Hasan, M. Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 15, 1140–1144 (2016).

    Article  CAS  Google Scholar 

  22. Burkov, A. A. Topological semimetals. Nat. Mater. 15, 1145–1148 (2016).

    Article  CAS  Google Scholar 

  23. Hasan, M. Z. et al. Discovery of Weyl fermion semimetals and topological Fermi arcs. Annu. Rev. Condens. Matter Phys. 8, 289–309 (2017).

    Article  CAS  Google Scholar 

  24. Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 8, 338–354 (2017).

    Article  Google Scholar 

  25. Zheng, H. & Hasan, M. Z. Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: a review. Adv. Phys. X 3, 146661 (2018).

    Google Scholar 

  26. Armitage, N. P., Mele, E. J. & Vishwannath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  CAS  Google Scholar 

  27. Hu, J., Xu, S.-Y., Ni, N. & Mao, Z. Transport of topological semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019).

    Article  CAS  Google Scholar 

  28. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  29. Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  30. Huang, S. M. et al. A Weyl fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

    Article  CAS  Google Scholar 

  31. Weng, H., Fang, C., Fang, Z., Bernevig, A. & Dai, X. Weyl semimetal phase in non-centrosymmetric transition metal monophosphides. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  32. Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

    Article  CAS  Google Scholar 

  33. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  CAS  Google Scholar 

  34. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    Article  CAS  Google Scholar 

  35. Balents, L. Weyl electrons kiss. Physics 4, 36 (2011).

    Article  Google Scholar 

  36. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    Article  CAS  Google Scholar 

  37. Xu, Y., Zhang, F. & Zhang, C. Structured Weyl points in spin-orbit coupled fermionic superfluids. Phys. Rev. Lett. 115, 265304 (2015).

    Article  CAS  Google Scholar 

  38. Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

    Article  CAS  Google Scholar 

  39. Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article  CAS  Google Scholar 

  40. Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

    Article  CAS  Google Scholar 

  41. Chang, G. et al. Unconventional chiral fermions and large topological topological Fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

    Article  Google Scholar 

  42. Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Article  Google Scholar 

  43. Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    Article  CAS  Google Scholar 

  44. Zhao, R. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    Article  CAS  Google Scholar 

  45. Takane, D. et al. Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122, 076402 (2019).

    Article  CAS  Google Scholar 

  46. Schröter, N. B. M. et al. Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759–765 (2019).

    Article  CAS  Google Scholar 

  47. Yang, Y. et al. Topological triply degenerate point with double Fermi arcs. Nat. Phys. 15, 645–649 (2019).

    Article  CAS  Google Scholar 

  48. He, H. et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 560, 61–64 (2018).

    Article  CAS  Google Scholar 

  49. Zhang, T. et al. Double-Weyl phonons in transition-metal monosilicides. Phys. Rev. Lett. 120, 016401 (2018).

    Article  CAS  Google Scholar 

  50. Miao, H. et al. Observation of double Weyl phonons in parity-breaking FeSi. Phys. Rev. Lett. 121, 035302 (2018).

    Article  CAS  Google Scholar 

  51. Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).

    Article  CAS  Google Scholar 

  52. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

    Article  CAS  Google Scholar 

  53. Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

    Article  CAS  Google Scholar 

  54. Xu, S.-Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294–298 (2015).

    Article  CAS  Google Scholar 

  55. Wieder, B. J. et al. Double Dirac semimetals in three dimensions. Phys. Rev. Lett. 116, 186402 (2016).

    Article  CAS  Google Scholar 

  56. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011).

    Article  CAS  Google Scholar 

  57. Phillips, M. & Aji, V. Tunable line node semimetals. Phys. Rev. B 90, 115111 (2014).

    Article  CAS  Google Scholar 

  58. Chiu, C. K. & Schnyder, A. P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors. Phy. Rev. B 90, 205136 (2014).

    Article  CAS  Google Scholar 

  59. Fang, C., Chen, Y., Kee, H. Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 081201 (2015).

    Article  CAS  Google Scholar 

  60. Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Article  Google Scholar 

  61. Yu, R., Weng, H., Fang, Z., Dai, X. & Hu, X. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys. Rev. Lett. 115, 036807 (2015).

    Article  CAS  Google Scholar 

  62. Xie, L. S. et al. A new form of Ca3P2 with a ring of Dirac nodes. APL Mater. 3, 083602 (2015).

    Article  CAS  Google Scholar 

  63. Bian, G. et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys. Rev. B 93, 121113 (2016).

    Article  CAS  Google Scholar 

  64. Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016).

    Article  CAS  Google Scholar 

  65. Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

    Article  CAS  Google Scholar 

  66. Neupane, M. et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 93, 201104(R) (2016).

    Article  CAS  Google Scholar 

  67. Hu, J. et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys. Rev. Lett. 117, 016602 (2016).

    Article  CAS  Google Scholar 

  68. Hosen, M. M. et al. Tunability of the topological nodal-line semimetal phase in ZrSiX-type materials (X=S, Se, Te). Phys. Rev. B 95, 161101(R) (2017).

    Article  Google Scholar 

  69. Zhu, Z. et al. Quasiparticle interference and nonsymmorphic effect on a floating band surface state of ZrSiSe. Nat. Commun. 9, 4153 (2018).

    Article  CAS  Google Scholar 

  70. Bzdušek, T. et al. Nodal-chain metals. Nature 538, 75–78 (2016).

    Article  CAS  Google Scholar 

  71. Chang, G. et al. Topological Hopf and chain link semimetal states and their application to Co2MnGa. Phys. Rev. Lett. 119, 156401 (2017).

    Article  Google Scholar 

  72. Chen, W., Lu, H. Z. & Hu, J.-M. Topological semimetals with a double-helix nodal link. Phys. Rev. B 96, 041102(R) (2017).

    Article  Google Scholar 

  73. Yan, Z. et al. Nodal-link semimetals. Phys. Rev. B 96, 041103(R) (2017).

    Article  Google Scholar 

  74. Chang, P.-Y. & Yee, C.-H. Weyl-link semimetals. Phys. Rev. B 96, 081114(R) (2017).

    Article  Google Scholar 

  75. Ezawa, M. Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link, Solomon’s knot, trefoil knot, and other linked nodal varieties. Phys. Rev. B 96, 041202(R) (2017).

    Article  Google Scholar 

  76. Bi, R., Yan, Z., Lu, L. & Wang, Z. Nodal-knot semimetals. Phys. Rev. B 96, 201305(R) (2017).

    Article  Google Scholar 

  77. Belopolski, I. et al. Discovery of topological Weyl lines and drumhead surface states in a room-temperature magnet. Science 365, 1278–1281 (2019).

    Article  CAS  Google Scholar 

  78. Weng, H. et al. Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride. Phys. Rev. B 93, 241202 (2016).

    Article  Google Scholar 

  79. Zhu, Z. et al. Triple point topological metals. Phys. Rev. X 6, 031003 (2016).

    Google Scholar 

  80. Chang, G. et al. Nexus fermions in topological symmorphic crystalline metals. Sci. Rep. 7, 1688 (2017).

    Article  CAS  Google Scholar 

  81. Georg, W. W. et al. Topological phases in InAs1−xSbx: from novel topological semimetal to Majorana wire. Phys. Rev. Lett. 117, 076403 (2016).

    Article  CAS  Google Scholar 

  82. Lv, B. Q. et al. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 546, 627–631 (2017).

    Article  CAS  Google Scholar 

  83. Ma, J.-Z. et al. Three-component fermions with surface Fermi arcs in tungsten carbide. Nat. Phys. 14, 349–354 (2018).

    Article  CAS  Google Scholar 

  84. Meng, T. & Balents, L. Weyl superconductors. Phys. Rev. B 86, 1054504 (2012).

    Article  Google Scholar 

  85. Bardarson, J. H., Lu, Y.-M. & Moore, J. E. Superconductivity of doped Weyl semimetals: finite-momentum pairing and electronic analogues of the 3He-A phase. Phys. Rev. B 86, 214514 (2012).

    Article  CAS  Google Scholar 

  86. Hosur, P. & Qi, X.-L. Time-reversal invariant topological superconductivity in doped Weyl semimetals. Phys. Rev. B 90, 045130 (2014).

    Article  CAS  Google Scholar 

  87. Bednik, G., Zyuzin, A. A. & Burkov, A. A. Superconductivity in Weyl semimetals. Phys. Rev. B 92, 035153 (2015).

    Article  CAS  Google Scholar 

  88. Li, Y. & Haldane, F. D. M. Topological nodal Cooper pairing in doped Weyl seimetals. Phys. Rev. Lett. 120, 067003 (2018).

    Article  CAS  Google Scholar 

  89. Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    Article  CAS  Google Scholar 

  90. Duval, C., Horvath, Z., Horvathy, P. A., Martina, L. & Stichel, P. C. Berry phase correction to electron density in solids and “exotic” dynamics. Mod. Phys. Lett. B 20, 373–378 (2006).

    Article  CAS  Google Scholar 

  91. Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

    Article  CAS  Google Scholar 

  92. Burkov, A. A. Chiral anomaly and diffusive magnetotransport in Weyl metals. Phys. Rev. Lett. 113, 247203 (2014).

    Article  CAS  Google Scholar 

  93. Xiong, J. et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015).

    Article  CAS  Google Scholar 

  94. Fukushima, K., Kharzeev, D. E. & Warringa, H. J. Chiral magnetic effect. Phys. Rev. D. 78, 074033 (2008).

    Article  CAS  Google Scholar 

  95. Zyuzin, A. A., Wu, S. & Burkov, A. A. Weyl semimetal with broken time reversal and inversion symmetries. Phys. Rev. B 85, 165110 (2012).

    Article  CAS  Google Scholar 

  96. Ma, K. & Pesin, D. A. Chiral magnetic effect and natural optical activity in metals with or without Weyl points. Phys. Rev. B 92, 235205 (2015).

    Article  CAS  Google Scholar 

  97. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  CAS  Google Scholar 

  98. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).

    CAS  Google Scholar 

  99. Baum, Y. Current at a distance and resonant transparency in Weyl semimetals. Phys. Rev. X 5, 041046 (2015).

    Google Scholar 

  100. Hosur, P. Friedel oscillations due to Fermi arcs in Weyl semimetals. Phys. Rev. B 86, 195102 (2012).

    Article  CAS  Google Scholar 

  101. Potter, A. C., Kimchi, I. & Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5, 5161 (2014).

    Article  CAS  Google Scholar 

  102. Zhang, C. et al. Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2. Nat. Commun. 8, 1272 (2017).

    Article  CAS  Google Scholar 

  103. Zhang, C. et al. Quantum Hall effect based on Weyl orbits in Cd3As2. Nature 565, 331–336 (2019).

    Article  CAS  Google Scholar 

  104. Ishizuka, H., Hayata, T., Ueda, M. & Nagaosa, N. Emergent electromagnetic induction and adiabatic charge pumping in Weyl semimetals. Phys. Rev. Lett. 117, 216601 (2016).

    Article  Google Scholar 

  105. Morimoto, T., Zhong, S., Orenstein, J. & Moore, J. E. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94, 245121 (2016).

    Article  Google Scholar 

  106. Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104 (2017).

    Article  Google Scholar 

  107. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  CAS  Google Scholar 

  108. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2016).

    Article  CAS  Google Scholar 

  109. Ma, Q. et al. Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017).

    Article  CAS  Google Scholar 

  110. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  CAS  Google Scholar 

  111. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    Article  CAS  Google Scholar 

  112. Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

    Article  CAS  Google Scholar 

  113. Chang, G. et al. Unconventional photocurrents from surface Fermi arcs in topological chiral semimetals. Phys. Rev. Lett. 124, 166404 (2020).

    Article  CAS  Google Scholar 

  114. Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

    Article  CAS  Google Scholar 

  115. Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

    Article  CAS  Google Scholar 

  116. Yang, L. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

    Article  CAS  Google Scholar 

  117. Xu, S.-Y. et al. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 1, e1501092 (2015).

    Article  Google Scholar 

  118. Xu, N. et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide. Nat. Commun. 7, 11006 (2016).

    Article  CAS  Google Scholar 

  119. Belopolski, I. et al. Criteria for directly detecting topological Fermi arcs in Weyl semimetals. Phys. Rev. Lett. 116, 066802 (2016).

    Article  CAS  Google Scholar 

  120. Liu, Z. K. et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15, 27–31 (2016).

    Article  CAS  Google Scholar 

  121. Lv, B. Q. et al. Observation of Fermi-arc spin texture in TaAs. Phys. Rev. Lett. 115, 217601 (2016).

    Article  CAS  Google Scholar 

  122. Xu, S.-Y. et al. Spin polarization and texture of the Fermi arcs in the Weyl fermion semimetal TaAs. Phys. Rev. Lett. 116, 096801 (2016).

    Article  CAS  Google Scholar 

  123. Zheng, H. et al. Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy. ACS Nano 10, 1378–1385 (2016).

    Article  CAS  Google Scholar 

  124. Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal. Science 351, 1184–1187 (2016).

    Article  CAS  Google Scholar 

  125. Batabyal, R. et al. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions. Sci. Adv. 2, e1600709 (2016).

    Article  CAS  Google Scholar 

  126. Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  127. Zhang, C. et al. Observation of the Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal. Nat. Commun. 7, 10735 (2016).

    Article  CAS  Google Scholar 

  128. Ghimire, N. J. et al. Magnetotransport of single crystalline NbAs. J. Phys. Condens. Matter 27, 152201 (2015).

    Article  CAS  Google Scholar 

  129. Arnold, F. et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 11615 (2016).

    Article  CAS  Google Scholar 

  130. Zhang, C. et al. Magnetic-tunnelling-induced Weyl node annihilation in TaP. Nat. Phys. 13, 979–986 (2017).

    Article  CAS  Google Scholar 

  131. Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645–649 (2015).

    Article  CAS  Google Scholar 

  132. Zhang, C. et al. Large magnetoresistance over an extended temperature regime in monophosphides of tantalum and niobium. Phys. Rev. B 92, 041203(R) (2015).

    Article  CAS  Google Scholar 

  133. Luo, Y. et al. Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs. Phys. Rev. B 92, 205134 (2015).

    Article  CAS  Google Scholar 

  134. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of the Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107(R) (2015).

    Article  CAS  Google Scholar 

  135. Chang, T.-R. et al. Arc-tunable Weyl fermion metallic state in MoxW1−xTe2. Nat. Commun. 7, 10639 (2016).

    Article  CAS  Google Scholar 

  136. Wang, Z. et al. MoTe2: A type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).

    Article  CAS  Google Scholar 

  137. Huang, L. et al. Spectroscopic evidence for type II Weyl semimetal state in MoTe2. Nat. Mater. 15, 1155–1160 (2016).

    Article  CAS  Google Scholar 

  138. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Article  CAS  Google Scholar 

  139. Belopolski, I. et al. Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2. Nat. Commun. 7, 13643 (2016).

    Article  CAS  Google Scholar 

  140. Belopolski, I. et al. Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1−xTe2. Phys. Rev. B 94, 085127 (2016).

    Article  CAS  Google Scholar 

  141. Bruno, F. Y. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, 121112(R) (2016).

    Article  Google Scholar 

  142. Tamai, A. et al. Fermi arcs and their topological character in the candidate type-II Weyl semimetal MoTe2. Phys. Rev. X 6, 031021 (2016).

    Google Scholar 

  143. Jiang, J. et al. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).

    Article  CAS  Google Scholar 

  144. Zheng, H. et al. Atomic-scale visualization of quasiparticle interference on a type-II Weyl semimetal surface. Phys. Rev. Lett. 117, 266804 (2017).

    Article  Google Scholar 

  145. Iaia, D. et al. Searching for topological Fermi arcs via quasiparticle interference on a type-II Weyl semimetal MoTe2. npj Quantum Mater. 3, 38 (2018).

    Article  CAS  Google Scholar 

  146. Xu, S.-Y. et al. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).

    Article  CAS  Google Scholar 

  147. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article  CAS  Google Scholar 

  148. Pletikosić, I. et al. Electronic structure basis for the extraordinary magnetoresistance in WTe2. Phys. Rev. Lett. 113, 216601 (2014).

    Article  CAS  Google Scholar 

  149. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article  CAS  Google Scholar 

  150. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article  CAS  Google Scholar 

  151. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13, 683–687 (2017).

    Article  CAS  Google Scholar 

  152. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2017).

    Article  CAS  Google Scholar 

  153. Chang, G. et al. Magnetic and noncentrosymmetric Weyl fermion semimetal states in the RAlGe family of compounds (R=rare earth). Phys. Rev. B 97, 041104(R) (2018).

    Article  Google Scholar 

  154. Suzuki, T. et al. Singular angular magnetoresistance in a magnetic nodal semimetal. Science 365, 377–381 (2019).

    Article  CAS  Google Scholar 

  155. Fang, C., Lu, L., Liu, J. & Fu, L. Topological semimetals with helicoid surface states. Nat. Phys. 12, 936–941 (2016).

    Article  Google Scholar 

  156. Yang, B. et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science 359, 1013–1016 (2018).

    Article  CAS  Google Scholar 

  157. Fang, C. et al. Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012).

    Article  CAS  Google Scholar 

  158. Xu, G. et al. Chern semi-metal and quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    Article  CAS  Google Scholar 

  159. Huang, S.-M. et al. New type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl Acad. Sci. USA 113, 1180–1185 (2016).

    Article  CAS  Google Scholar 

  160. Shapiro, M. C. et al. Structure and magnetic properties of the pyrochlore iridate Y2Ir2O7. Phys. Rev. B 85, 214434 (2012).

    Article  CAS  Google Scholar 

  161. Liu, H. et al. Magnetic order, spin dynamics and transport properties of the pyrochlore iridate Y2Ir2O7. Solid State Commun. 179, 1–5 (2012).

    Article  CAS  Google Scholar 

  162. Belopolski, I. et al. A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases. Sci. Adv. 3, e1501692 (2017).

    Article  CAS  Google Scholar 

  163. Guan, T. et al. Evidence for half-metallicity in n-type HgCr2Se4. Phys. Rev. Lett. 115, 087002 (2015).

    Article  CAS  Google Scholar 

  164. Adler, S. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).

    Article  Google Scholar 

  165. Bell, J. S. & Jackiw, R. A PCAC puzzle: π0γγ in the σ-model. Nuovo Cim. A 60, 47–61 (1969).

    Article  CAS  Google Scholar 

  166. dos Reis, R. D. et al. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance. New J. Phys. 18, 085006 (2016).

    Article  Google Scholar 

  167. Dai, X., Du, Z. Z. & Lu, H.-Z. Negative magnetoresistance without chiral anomaly in topological insulators. Phys. Rev. Lett. 119, 166601 (2017).

    Article  Google Scholar 

  168. Andreev, A. V. & Spivak, B. Z. Longitudinal negative magnetoresistance and magnetotransport phenomena in conventional and topological conductors. Phys. Rev. Lett. 120, 026601 (2018).

    Article  CAS  Google Scholar 

  169. Wang, Z. et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88, 125427 (2013).

    Article  CAS  Google Scholar 

  170. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 14, 280–284 (2014).

    Article  CAS  Google Scholar 

  171. Razzoli, E. et al. Stable Weyl points, trivial surface states and particle-hole compensation in WP2. Phys. Rev. B 97, 201103 (2018).

    Article  CAS  Google Scholar 

  172. Sanchez, D. S. et al. Observation of Weyl fermions in a magnetic non-centrosymmetric crystal. Nat. Commun. 11, 3356 (2020).

    Article  CAS  Google Scholar 

  173. Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).

    Article  CAS  Google Scholar 

  174. Zhuoliang, N. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Commun. 12, 154 (2021).

    Article  CAS  Google Scholar 

  175. Schröter, N. B. M. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).

    Article  CAS  Google Scholar 

  176. Cochran, T. A. et al. A Fermi arc quantum ladder. Preprint at arXiv 2004.11365 (2020).

  177. Yan, Q. et al. Experimental discovery of nodal chains. Nat. Phys. 14, 461–464 (2018).

    Article  CAS  Google Scholar 

  178. Neto, E. H. & da, S. “Weyl”ing away time-reversal symmetry. Science 365, 1248–1249 (2019).

    Article  CAS  Google Scholar 

  179. Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    Article  CAS  Google Scholar 

  180. Reichlova, H. et al. Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. Appl. Phys. Lett. 113, 212405 (2018).

    Article  CAS  Google Scholar 

  181. Manna, K. et al. From colossal to zero: controlling the anomalous Hall effect in magnetic Heusler compounds via Berry curvature design. Phys. Rev. X 8, 041045 (2018).

    CAS  Google Scholar 

  182. Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    Article  CAS  Google Scholar 

  183. Kim, K. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018).

    Article  CAS  Google Scholar 

  184. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article  CAS  Google Scholar 

  185. Wang, Q. et al. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions. Nat. Commun. 9, 3681 (2018).

    Article  CAS  Google Scholar 

  186. Xu, Q. et al. Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2 with magnetic Weyl fermions. Phys. Rev. B 97, 235416 (2018).

    Article  CAS  Google Scholar 

  187. Liu, D. F. et al. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365, 1282–1285 (2019).

    Article  CAS  Google Scholar 

  188. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article  CAS  Google Scholar 

  189. Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mat. 31, 1806622 (2019).

    Article  CAS  Google Scholar 

  190. Zhou, H. et al. Enhanced anomalous Hall effect in the magnetic topological semimetal Co3Sn2−xInxS2. Phys. Rev. B 101, 125121 (2020).

    Article  CAS  Google Scholar 

  191. Belopolski, I. et al. Signatures of a topological Weyl loop in Co3Sn2S2. Preprint at arXiv 2005.02400 (2020).

  192. Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    Article  CAS  Google Scholar 

  193. Yin, J.-X. et al. Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature 562, 91–95 (2018).

    Article  CAS  Google Scholar 

  194. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  CAS  Google Scholar 

  195. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article  CAS  Google Scholar 

  196. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article  CAS  Google Scholar 

  197. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Article  CAS  Google Scholar 

  198. Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

    Article  CAS  Google Scholar 

  199. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    Article  CAS  Google Scholar 

  200. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486–489 (2019).

    Article  CAS  Google Scholar 

  201. Zunger, A. Beware of plausible predictions of fantasy materials. Nature 566, 447–449 (2019).

    Article  CAS  Google Scholar 

  202. Xiao, D., Chang, M. C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  CAS  Google Scholar 

  203. Resta, R. Electrical polarization and orbital magnetization: the modern theories. J. Phys. Condens. Matter 22, 123201 (2010).

    Article  CAS  Google Scholar 

  204. Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    Article  CAS  Google Scholar 

  205. Yin, J. -X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536 (2020).

    Article  CAS  Google Scholar 

  206. Yin, J. -X. et al. Fermion–boson many-body interplay in a frustrated kagome paramagnet. Nat. Commun. 11, 4003 (2020).

    Article  CAS  Google Scholar 

  207. Zhang, S.S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020).

    Article  CAS  Google Scholar 

  208. He, K., Wang, Y. & Xue, Q.-K. Topological materials: quantum anomalous Hall system. Annu. Rev. Condens. Matter Phys. 9, 329–344 (2018).

    Article  CAS  Google Scholar 

  209. Yin, J.-X., Pan, S. H. and Hasan, M. Z. Probing topological quantum matter with scanning tunnelling microscopy. Nat. Rev. Phys. https://doi.org/10.1038/s42254-021-00293-7 (2021).

    Article  Google Scholar 

  210. Wang, Y. et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat. Commun. 7, 13142 (2016).

    Article  CAS  Google Scholar 

  211. Koepernik, K. et al. TaIrTe4 a ternary type-II Weyl semimetal. Phys. Rev. B 93, 201101(R) (2016).

    Article  CAS  Google Scholar 

  212. Belopolski, I. et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points. Nat. Commun. 8, 942 (2017).

    Article  CAS  Google Scholar 

  213. Haubold, E. et al. Experimental realization of type-II Weyl state in non-centrosymmetric TaIrTe4. Phys. Rev. B 95, 241108(R) (2017).

    Article  Google Scholar 

  214. Kim, S. et al. Magnetotransport and de Haas–van Alphen measurements in the type-II Weyl semimetal TaIrTe4. Phys. Rev. B 94, 165145 (2016).

    Article  CAS  Google Scholar 

  215. Autés, G. et al. Robust type-II Weyl semimetal phase in transition metal diphosphides XP2 (X = Mo, W). Phys. Rev. Lett. 117, 066402 (2016).

    Article  CAS  Google Scholar 

  216. Kumar, N. et al. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2. Nat. Commun. 8, 1642 (2017).

    Article  CAS  Google Scholar 

  217. Singh, B. et al. Topological electronic structure and Weyl semimetal in the TlBiSe2 class of semiconductors. Phys. Rev. B 86, 115208 (2012).

    Article  CAS  Google Scholar 

  218. Halász, G. B. & Balents, L. Time-reversal invariant realization of the Weyl semimetal phase. Phys. Rev. B 85, 035103 (2012).

    Article  CAS  Google Scholar 

  219. Liu, J. & Vanderbilt, D. Weyl semimetals from noncentrosymmetric topological insulators. Phys. Rev. B 90, 155316 (2014).

    Article  CAS  Google Scholar 

  220. Hirayama, M., Okugawa, R., Ishibashi, S., Murakami, S. & Miyake, T. Weyl node and spin texture in trigonal tellurium and selenium. Phys. Rev. Lett. 114, 206401 (2015).

    Article  CAS  Google Scholar 

  221. Chang, G. et al. A strongly robust Weyl fermion semimetal state in Ta3S2. Sci. Adv. 2, e1600295 (2016).

    Article  CAS  Google Scholar 

  222. Chen, D. et al. Magnetotransport properties of the type II Weyl semimetal candidate Ta3S2. Phys. Rev. B 94, 174411 (2016).

    Article  Google Scholar 

  223. Ruan, J. et al. Ideal Weyl semimetals in the chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2 and ZnPbAs2. Phys. Rev. Lett. 116, 226801 (2016).

    Article  CAS  Google Scholar 

  224. Liu, C.-C., Zhou, J.-J., Yao, Y. & Zhang, F. Weak topological insulators and composite Weyl semimetals: β-Bi4X4 (X=Br, I). Phys. Rev. Lett. 116, 066801 (2016).

    Article  CAS  Google Scholar 

  225. Zhang, C.-L. et al. Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate β-Ag2Se. Phys. Rev. B 96, 165148 (2017).

    Article  Google Scholar 

  226. Kim, H.-J. et al. Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. Phys. Rev. Lett. 111, 246603 (2013).

    Article  CAS  Google Scholar 

  227. Bulmash, D., Liu, C.-X. & Qi, X.-L. Prediction of a Weyl semimetal in Hg1−xyCdxMnyTe. Phys. Rev. B 89, 081106(R) (2014).

    Article  CAS  Google Scholar 

  228. Borisenko, S. et al. Time-reversal symmetry breaking Weyl state in YbMnBi2. Nat. Commun. 10, 3424 (2019).

    Article  CAS  Google Scholar 

  229. Schoop, L. M. et al. Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe. Sci. Adv. 4, eaar2317 (2018).

    Article  CAS  Google Scholar 

  230. Hirschberger, M. et al. The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. Nat. Mater. 15, 1161–1165 (2016).

    Article  CAS  Google Scholar 

  231. Wang, Z. et al. Time-reversal-breaking Weyl fermions in magnetic Heusler alloys. Phys. Rev. Lett. 117, 236401 (2016).

    Article  CAS  Google Scholar 

  232. Chang, G. et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in half-metallic Heusler Co2TiX (X=Si, Ge, or Sn). Sci. Rep. 6, 38839 (2016).

    Article  CAS  Google Scholar 

  233. Fischer, M. F. et al. Chiral d-wave superconductivity in SrPtAs. Phys. Rev. B 89, 020509(R) (2014).

    Article  CAS  Google Scholar 

  234. Biswas, P. K. et al. Evidence for superconductivity with broken time-reversal symmetry in locally non-centrosymmetric SrPtAs. Phys. Rev. B 87, 180503(R) (2013).

    Article  Google Scholar 

  235. Goswami, P. & Balicas, L. Topological properties of possible Weyl superconducting states of URu2Si2. Preprint at arXiv 1312.3632 (2013).

  236. Goswami, P. & Nevidomskyy, A. H. Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt3. Phys. Rev. B 92, 214504 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge P. W. Anderson, D. A. Huse, F. D. M. Haldane, N. P. Ong and E. Lieb for discussions on quantum magnets, topological matter, spin liquids and superconductivity. We further acknowledge insightful discussions with Alexei V. Federov, Arun Bansil, BaoKai Wang, Benjamin J Wieder, Biao Lian, Chang Liu, Chenglong Zhang, Chi-Cheng Lee, Ching-Kai Chiu, Claudia Felser, Daniel Multer, Daniel S. Sanchez, David Hsieh, Dong Qian, Donghui Lu, Fangcheng Chou, Hao Zheng, Hechang Lei, Horng-Tay Jeng, Hsin Lin, Huibin Zhou, Jie Ma, Jonathan Denlinger, Kaustuv Manna, L. Andrew Wray, Madhab Neupane, Makoto Hashimoto, Maksim Litskevich, Md Shafayat Hossain, Nana Shumiya, Nasser Alidoust, Niels B. M. Schröter, Pavel P. Shibayev, Qi Zhang, Raman Sankar, Shik Shin, Shin-Ming Huang, Shuang Jia, Songtian S. Zhang, Stepan S Tsirkin, Sung-Kwan Mo, Takeshi Kondo, Tay-Rong Chang, Titus Neupert, Tyler A. Cochran, Weiwei Xie, Vicky Süß, Vladimir N. Strocov, Xian P Yang, Yukiaki Ishida, Yuqi Xia, Yuxiao Jiang, Zahid Hussain, Zheng Liu, Zhujun Yuan, Zi-Jia Cheng and Zurab Guguchia. We acknowledge experimental collaboration with Vladimir N. Strocov, Niels B. M. Schröter and Alla Chikina (ADRESS endstation, Swiss Light Source, Paul Scherrer Institut, Proposal #20180896) in acquiring data presented in Fig. 5c, the details of which will be published in a forthcoming article. Spectroscopy work led by Princeton University was supported by the United States Department of Energy (U.S. DOE) under the Basic Energy Sciences programme (grant number DOE/BES DE-FG-02-05ER46200; M.Z.H.). The theoretical work and sample characterization are supported by the Gordon and Betty Moore Foundation (GBMF4547 and GBMF9461; M.Z.H.). The sample characterization related to topological magnetism and superconductivity is partly based on support by the U.S. DOE, Office of Science through the Quantum Science Center (QSC), a National Quantum Information Science Research Center at the Oak Ridge National Laboratory. G.C. would like to acknowledge the support of the National Research Foundation, Singapore under its NRF Fellowship Award (NRF-NRFF13-2021-0010) and the Nanyang Assistant Professorship grant from Nanyang Technological University. S.Y.X. was supported by the Center for the Advancement of Topological Semimetals, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE) Office of Science, through the Ames Laboratory under contract DE-AC0207CH11358. S.Y.X. acknowledges the Corning Fund for Faculty Development. G.B. was supported by the US National Science Foundation under Grant No. NSF DMR-1809160.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to M. Zahid Hasan or Guoqing Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.Z., Chang, G., Belopolski, I. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat Rev Mater 6, 784–803 (2021). https://doi.org/10.1038/s41578-021-00301-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00301-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing