Skip to main content

Advertisement

Log in

Occurrence, behavior, and human exposure and health risks of potentially toxic elements in edible mushrooms with focus on Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Understanding the occurrence, behavior, and fate of potentially toxic elements (PTEs) in the substrate-mushroom-human nexus is critical for assessing and mitigating their human health risks. In this review, we (1) summarized the nature, sources, and biogeochemical behavior of PTEs in the substrate-mushroom systems; (2) discussed the occurrence, exposure, and human health risks of PTEs in mushrooms with emphasis on African geological hotspots such as metalliferous and highly mineralized substrates; (3) developed a 10-step conceptual framework for identifying, assessing, and mitigating the human health risks of PTEs in mushrooms, and highlight future directions. High human exposure risks potentially exist in Africa due to the following: (1) widespread consumption of mushrooms from various metalliferrous and highly mineralized substrates such as serpentines and mine waste dumps, (2) inadequate and poorly enforced environmental health and food safety regulations and policies, (3) limited environmental and human health monitoring data, and (4) potential synergistic interactions among PTEs in mushrooms and human health stressors such as a high burden of human diseases and infections. Although the human health effects of individual PTEs are well known, scientific evidence linking human health risk to PTEs in mushrooms remains weak. A framework for risk assessment and mitigation, and future research directions are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

source-substrate-mushroom system

Fig. 3

adapted from Ma et al., (2016) and Mishra et al., (2017))

Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abulude, F. O., & Ndamitso, M. M. (2018). Assessment of heavy metals in mushroom species obtained in Akure Nigeria. Assumption University-eJournal of Interdisciplinary Research, 3(2), 194–201.

    Google Scholar 

  • Ahoulé, D. G., Lalanne, F., Mendret, J., Brosillon, S., & Maïga, A. H. (2015). Arsenic in African Waters: A Review. Water, Air, and Soil pollution, 226, 302. https://doi.org/10.1007/s11270-015-2558-4

    Article  CAS  Google Scholar 

  • Ali, A., Guo, D., Mahr, A., Wang, P., Shen, F., Li, R., & Zhang, Z. (2017). Mycoremediation of Potentially toxic trace elements - a biological tool for soil cleanup: a review. Pedosphere, 27, 205–222. https://doi.org/10.1016/S1002-0160(17)60311-4

    Article  CAS  Google Scholar 

  • Aloupi, M., Koutrotsios, G., Koulousaris, M., & Kalogeropoulos, N. (2012). Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos Greece. Ecotoxicology and Environmental Safety, 78, 184–194. https://doi.org/10.1016/j.ecoenv.2011.11.018

    Article  CAS  Google Scholar 

  • Árvay, J., Tomáš, J., Hauptvogl, M., Kopernická, M., Kováčik, A., Bajčan, D., & Massányi, P. (2014). Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. Journal of Environmental Science and Health, Part B, 49(11), 815–827. https://doi.org/10.1080/03601234.2014.938550

    Article  CAS  Google Scholar 

  • Babula, P., Adam, V., Opatrilova, R., Zehnalek, J., Havel, L., & Kizek, R. (2008). Uncommon metals, metalloids and their plant toxicity: a review. Environmental Chemistry Letters, 6, 189–213. https://doi.org/10.1007/s10311-008-0159-9

    Article  CAS  Google Scholar 

  • Baeza, A., Guillen, F. J., Salas, A., & Manjon, J. L. (2006). Distribution of radionuclides in different parts of a mushroom: Influence of the degree of maturity. Science of the Total Environment, 359, 255–266. https://doi.org/10.1016/j.scitotenv.2005.05.015

    Article  CAS  Google Scholar 

  • Baeza, A., Hernandez, S., Guillen, F. J., Moreno, G., Manjon, J. L., & Pascual, R. (2004). Radiocaesium and natural gamma emitters in mushrooms collected in Spain. Science of the Total Environment, 318, 59–71. https://doi.org/10.1016/S0048-9697(03)00363-2

    Article  CAS  Google Scholar 

  • Barany, M., Hammett, A. L., Stadler, K. M., & Kengni, E. (2004). Non-timber forest products in the food security and nutrition of smallholders afflicted by HIV/AIDS in sub-Saharan Africa. Forests, Trees and Livelihoods, 14(1), 3–18. https://doi.org/10.1080/14728028.2004.9752475

    Article  Google Scholar 

  • Barcan, V. S., Kovnatsky, E. F., & Smetannikova, M. S. (1998). Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water, Air, and Soil pollution, 103, 173–195. https://doi.org/10.1023/A:1004972632578

    Article  CAS  Google Scholar 

  • Baumann, N., Arnold, T., & Haferburg, G. (2014). Uranium contents in plants and mushrooms grown on a uranium-contaminated site near Ronneburg in Eastern Thuringia/Germany. Environmental Science and Pollution Research, 21(11), 6921–6929. https://doi.org/10.1007/s11356-013-1913-5

    Article  CAS  Google Scholar 

  • Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research, 169, 483–493.

  • Benucci, G. M. N., Longley, R., Zhang, P., Zhao, Q., Bonito, G., & Yu, F. (2019). Microbial communities associated with the black morel Morchella sextelata cultivated in greenhouses. PeerJ, 7, e7744. https://doi.org/10.7717/peerj.7744

    Article  CAS  Google Scholar 

  • Borovička, J., Konvalinková, T., Žigová, A., Ďurišová, J., Gryndler, M., Hršelová, H., Kameník, J., Leonhardt, T., & Sácký, J. (2019). Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus Amanita strobiliformis from two sites. Science of the Total Environment, 694, 133679. https://doi.org/10.1016/j.scitotenv.2019.133679

    Article  CAS  Google Scholar 

  • Borovička, J., Kotrba, P., Gryndler, M., MihaljeviČ, M., Řanda, Z., Rohovec, J., Cajthaml, T., Stijve, T., & Dunn, C. E. (2010). Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Science of the Total Environment, 408, 2733–2744. https://doi.org/10.1016/j.scitotenv.2010.02.031

    Article  CAS  Google Scholar 

  • Borovička, J., Kubrova, J., Rohovec, J., Randa, Z., & Dunn, C. (2011). Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations? BioMetals, 24(5), 837–845. https://doi.org/10.1007/s10534-011-9435-4

    Article  CAS  Google Scholar 

  • Borovička, J., Mihaljevič, M., Gryndler, M., Kubrová, J., Žigová, A., Hršelová, H., & Řanda, Z. (2014). Lead isotopic signatures of saprotrophic macrofungi of various origins: Tracing for lead sources and possible applications in geomycology. Appl. Geochemistry, 43, 114–120. https://doi.org/10.1016/j.apgeochem.2014.02.012

    Article  CAS  Google Scholar 

  • Borovička, J., Řanda, Z., Jelínek, E., Kotrba, P., & Dunn, C. E. (2007). Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycological Research, 111(11), 1339–1344.

  • Bulko, N. I., Shabaleva, M. A., Kozlov, A. K., Tolkacheva, N. V., & Mashkov, I. A. (2014). The 137Cs accumulation by forest-derived products in the Gomel region. Journal of Environmental Radioactivity, 127, 150–154. https://doi.org/10.1016/j.jenvrad.2013.02.003

    Article  CAS  Google Scholar 

  • Braeuer, S., & Goessler, W. (2019). Arsenic species in mushrooms, with a focus on analytical methods for their determination – A critical review. Analytica Chimica Acta, 1073, 1–21. https://doi.org/10.1016/j.aca.2019.04.004

    Article  CAS  Google Scholar 

  • Campos, J. A., Tejera, N. A., & Sanchez, C. J. (2009). Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. BioMetals, 22, 835–841. https://doi.org/10.1007/s10534-009-9230-7

    Article  CAS  Google Scholar 

  • Carrasco, J., & Preston, G. M. (2019). Growing edible mushrooms: a conversation between bacteria and fungi. Environmental Microbiology, 22, 858–872. https://doi.org/10.1111/1462-2920.14765

    Article  Google Scholar 

  • Cha, H. A., Kang, S. H., Choe, S. B., Kim, H. K., & Kang, S. T. (2014). Hazardous heavy metal contents of mushrooms from retail markets in Seoul. Korean Journal of Food Science and Technology, 46(3), 283–287. https://doi.org/10.9721/KJFST.2014.46.3.283

    Article  Google Scholar 

  • Chang, R. (1996). Functional properties of edible mushrooms. Nutrition Reviews, 54, S91–S93. https://doi.org/10.1111/j.1753-4887.1996.tb03825.x

  • Chatterjee, S., Sarma, M. K., Deb, U., Steinhauser, G., Walther, C., & Gupta, D. K. (2017). Mushrooms: from nutrition to mycoremediation. Environmental Science and Pollution Research, 24, 19480–19493. https://doi.org/10.1007/s11356-017-9826-3

    Article  CAS  Google Scholar 

  • Chiaravalle, A. E., Mangiacotti, M., Marchesani, G., Bortone, N., Tomaiuolo, M., & Trotta, G. (2018). A ten-year survey of radiocontamination of edible Balkan mushrooms: Cs-137 activity levels and assessed dose to the population. Food Control, 94, 263–267. https://doi.org/10.1016/j.foodcont.2018.05.045

    Article  CAS  Google Scholar 

  • Chungu, D., Mwanza, A., Ng’andwe, P., Chungu, B. C., & Maseka, K. (2019). Variation of heavy metal contamination between mushroom species in the Copperbelt province, Zambia: are the people at risk? Journal of the Science of Food and Agriculture, 99(7), 3410–3416. https://doi.org/10.1002/jsfa.9558

    Article  CAS  Google Scholar 

  • Cordeiro, F., Llorente-Mirandes, T., López-Sánchez, J. F., Rubio, R., Sánchez Agullo, A., Raber, G., Scharf, H., Vélez, D., Devesa, V., Fiamegos, Y., Emteborg, H., Seghers, J., Robouch, P., & de La Calle, M. B. (2015). Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39. Food Additives & Contaminants: Part A, 32(1), 54–67.

  • Daniel-Umeri, R. A., Emumejaye, K., & Ojebah, C. K. (2015). Assessment of heavy metals in some wild edible mushrooms collected from ozoro and its environs, Delta State, Nigeria. International Journal of Science and Technology, 5(10), 1–9.

  • de Castro, L. P., Maihara, V. A., Silva, P. S. C., & Figueira, R. C. L. (2012). Artificial and natural radioactivity in edible mushrooms from Sao Paulo, Brazil. Journal of Environmental Radioactivity, 113, 150–154.

    Article  Google Scholar 

  • Doĝan, H. H., Şanda, M. A., Uyanöz, R., Öztürk, C., & Çetin, Ü. (2006). Contents of metals in some wild mushrooms. Biological Trace Element Research, 110(1), 79–94.

  • Edosomwan, E. U., Akpaja, E. O., & Iyoha, D. (2013). Analysis of bacteria, helminths eggs and heavy metals in tropical mushrooms sold in selected markets in Benin City, Nigeria. Botany Research International, 6(1), 17–22.

  • Falandysz, J., & Borovička, J. (2013). Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Applied Microbiology and Biotechnology, 97(2), 477–501. https://doi.org/10.1007/s00253-012-4552-8

    Article  CAS  Google Scholar 

  • Falandysz, J., Drewnowska, M., Chudzińska, M., & Barałkiewicz, D. (2017). Accumulation and distribution of metallic elements and metalloids in edible Amanita fulva mushrooms. Ecotoxicology and Environmental Safety, 137, 265–271. https://doi.org/10.1016/j.ecoenv.2016.12.014

    Article  CAS  Google Scholar 

  • Falandysz, J., & Gucia, M. (2008). Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera). Environmental Geochemistry and Health, 30, 121–125. https://doi.org/10.1007/s10653-008-9133-5

    Article  CAS  Google Scholar 

  • Falandysz, J., & Rizal, L. M. (2016). Arsenic and its compounds in mushrooms: A review. J. Environ. Sci. Heal. Part C, 34, 217–232. https://doi.org/10.1080/10590501.2016.1235935

    Article  CAS  Google Scholar 

  • Falandysz, J., Saniewski, M., Zalewska, T., & Zhang, J. (2019). Radiocaesium pollution of fly agaric Amanita muscaria in fruiting bodies decreases with developmental stage. Isotopes in Environmental and Health Studies, 55, 317–324. https://doi.org/10.1080/10256016.2019.1609961

    Article  CAS  Google Scholar 

  • Falandysz, J., Zhang, J., Wang, Y. Z., Saba, M., Krasiñska, G., Wiejak, A., & Li, T. (2015). Evaluation of mercury contamination in fungi boletus species from latosols, lateritic red earths, and red and yellow earths in the circum-pacific mercuriferous belt of southwestern China. PLoS ONE, 10, 1–19. https://doi.org/10.1371/journal.pone.0143608

    Article  CAS  Google Scholar 

  • Falandysz, J., Zhang, J., & Zalewska, T. (2017c). Radioactive artificial 137Cs and natural 40K activity in 21 edible mushrooms of the genus Boletus species from SW China. Environmental Science and Pollution Research, 24, 8189–8199. https://doi.org/10.1007/s11356-017-8494-7

    Article  CAS  Google Scholar 

  • Fayiga, A. O., Ipinmoroti, M. O., & Chirenje, T. (2018). Environmental pollution in Africa. Environment, Development and Sustainability., 20, 41–73. https://doi.org/10.1007/s10668-016-9894-4

    Article  Google Scholar 

  • Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  Google Scholar 

  • Fiket, Z., Mikac, N., & Kniewald, G. (2016). Mass fractions of forty-six major and trace elements, including rare earth elements, in sediment and soil reference materials used in environmental studies. Geostandards and Geoanalytical Research, 41(1), 123–135. https://doi.org/10.1111/ggr.12129

    Article  CAS  Google Scholar 

  • Galanda, D., Mátel, Ä., Strišovská, J., & Dulanská, S. (2014). Mycoremediation: The study of transfer factor for plutonium and americium uptake from the ground. Journal of Radioanalytical and Nuclear Chemistry, 299, 1411–1416. https://doi.org/10.1007/s10967-013-2909-9

    Article  CAS  Google Scholar 

  • García-Delgado, C., Yunta, F., & Eymar, E. (2015). Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability. Journal of Hazardous Materials, 300, 281–288.

  • Gebrelibanos, M., Megersa, N., & Taddesse, A. M. (2016). Levels of essential and non-essential metals in edible mushrooms cultivated in Haramaya, Ethiopia. International Journal of Food Contamination, 3(1), 1–12.

  • Govorushko, S., Rezaee, R., Dumanov, J., & Tsatsakis, A. (2019). Poisoning associated with the use of mushrooms: A review of the global pattern and main characteristics. Food and Chemical Toxicology, 128, 267–279. https://doi.org/10.1016/j.fct.2019.04.016

    Article  CAS  Google Scholar 

  • Guillén, J., Baeza, A., Ontalba, M. A., & Míguez, M. P. (2009). 210Pb and stable lead content in fungi: Its transfer from soil. Science of the Total Environment, 407, 4320–4326. https://doi.org/10.1016/j.scitotenv.2009.03.025

    Article  CAS  Google Scholar 

  • Gwenzi, W. (2020). Occurrence, behaviour, and human exposure pathways and health risks of toxic geogenic contaminants in serpentinitic ultramafic geological environments (SUGEs): A medical geology perspective. Science of The Total Environment, 700, 134622.

  • Gwenzi, W., & Chaukura, N. (2018). Organic contaminants in African aquatic systems: current knowledge, health risks, and future research directions. Science of the Total Environment, 619, 1493–1514. https://doi.org/10.1016/j.scitotenv.2017.11.121

    Article  CAS  Google Scholar 

  • Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235

    Article  CAS  Google Scholar 

  • Gwynn, J. P., Nalbandyan, A., & Rudolfsen, G. (2013). 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. Journal of Environmental Radioactivity, 116, 34–41. https://doi.org/10.1016/j.jenvrad.2012.08.016

    Article  CAS  Google Scholar 

  • Herath, I., Vithanage, M., Bundschuh, J., Maity, J. P., & Bhattacharya, P. (2016). Natural Arsenic in Global Groundwaters: Distribution and Geochemical Triggers for Mobilization. Curr Pollut Reports, 2, 68–89. https://doi.org/10.1007/s40726-016-0028-2

    Article  CAS  Google Scholar 

  • Huang, S. J., Lin, C. P., & Tsai, S. Y. (2015). Vitamin D2 content and antioxidant properties of fruit body and mycelia of edible mushrooms by UV-B irradiation. Journal of Food Composition and Analysis, 42, 38–45.

  • Huerta, V. D., Sánchez, M. L. F., & Sanz-Medel, A. (2005). Qualitative and quantitative speciation analysis of water soluble selenium in three edible wild mushrooms species by liquid chromatography using post-column isotope dilution ICP–MS. Analytica Chimica Acta, 538(1–2), 99–105.

  • Ihugba, U. A., Nwoko, C. O., Tony-Njoku, F. R., Ojiaku, A. A., & Izunobi, L. (2018). Heavy metal determination and health risk assessment of oyster mushroom Pleurotus tuberregium (Fr.) Singer, collected from selected markets in Imo State. Nigeria. American Journal of Environmental Protection, 6(1), 22–27.

  • Ip, C. C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2007). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323. https://doi.org/10.1016/j.envpol.2006.06.028

    Article  CAS  Google Scholar 

  • Ivanic, M., Fiket, Z., Meduni, G., Turk, M. F., Marovi, G., Sencar, J., & Kniewald, G. (2019). Multi-element composition of soil, mosses and mushrooms and assessment of natural and artificial radioactivity of a pristine temperate rainforest system (Slavonia, Croatia). Chemosphere, 215, 668–677. https://doi.org/10.1016/j.chemosphere.2018.10.108

    Article  CAS  Google Scholar 

  • Jain, M., Gupta, V. K., & Kumar, A. (2013). Bioaccumulation of cadmium content in mushroom and soil in Delhi-NCR region of India. Chemical Science Transactions, 2(4), 1288–1295.

  • JECFA. (2011). Safety Evaluation of Certain Contaminants in Food, Prepared by the Seventy-second Meeting of the Joint FAO/WHO (2011) Expert Committee on Food Additives (JECFA). WHO Food Additives Series, vol. 959. Rome, Italy.

  • Jonnalagadda, S. B., Pienaar, D. H., Haripersad, K. (2006). Elemental distribution in selected Agaricus and Rhizina mushrooms in South Africa. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 41(3), 507–514. https://doi.org/10.1080/10934520500542425

  • Kalač, P. (2001). A review of edible mushroom radioactivity. Food Chemistry, 75(1), 29–35.

  • Kalač, P. (2010). Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chemistry, 122, 2–15. https://doi.org/10.1016/j.foodchem.2010.02.045

    Article  CAS  Google Scholar 

  • Kalač, P. (2016). Chapter 1 - Introduction, Editor(s): Pavel Kalač, Edible Mushrooms, Academic Press, pp 1-6, ISBN 9780128044551. https://doi.org/10.1016/B978-0-12-804455-1.00001-1

  • Kalač, P., Nižnanská, M., Bevilaqua, D., & Stašková, I. (1996). Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. Science of the Total Environment, 177, 251–258. https://doi.org/10.1016/0048-9697(95)04850-2

    Article  Google Scholar 

  • Kalač, P., & Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69, 273–281. https://doi.org/10.1016/S0308-8146(99)00264-2

    Article  Google Scholar 

  • Kalač, P., Svoboda, L., & Havlíčková, B. (2004). Contents of cadmium and mercury in edible mushrooms. Journal of Applied Biomedicine, 2(1), 15–20.

  • Kaninga, B. K., Chishala, B. H., Maseka, K. K., Sakala, G. M., Lark, M. R., Tye, A., & Watts, M. J. (2019). Mine tailings in an African tropical environment - Mechanisms for the bioavailability of heavy metals in soils. Environmental Geochemistry and Health, 42, 1–26.

  • Kimura, T. (2013). Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. BioMed Research International, 2013, 982317. https://doi.org/10.1155/2013/982317

  • Kirchner, G., & Daillant, O. (1998). Accumulation of 210Pb, 226Ra and radioactive cesium by fungi. Science of the Total Environment, 222, 63–70. https://doi.org/10.1016/S0048-9697(98)00288-5

    Article  CAS  Google Scholar 

  • Kokkoris, V., Massas, I., Polemis, E., Koutrotsios, G., & Zervakis, G. I. (2019). Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Science of the Total Environment, 685, 280–296. https://doi.org/10.1016/j.scitotenv.2019.05.447

    Article  CAS  Google Scholar 

  • Komatsu, M., Nishina, K., & Hashimoto, S. (2019). Extensive analysis of radiocesium concentrations in wild mushrooms in eastern Japan affected by the Fukushima nuclear accident: Use of open accessible monitoring data. Environmental Pollution. 255, Part 2, 113236. https://doi.org/10.1016/j.envpol.2019.113236

  • Kubrová, J., Žigová, A., Řanda, Z., Rohovec, J., Gryndler, M., Krausová, I., Dunn, C. E., Kotrba, P., & Borovička, J. (2014). On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. Journal of Hazardous Materials, 280, 79–88. https://doi.org/10.1016/j.jhazmat.2014.07.050

    Article  CAS  Google Scholar 

  • Kula, I., Solak, M. H., Uğurlu, M., Işıloğlu, M., & Arslan, Y. (2011). Determination of mercury, cadmium, lead, zinc, selenium and iron by ICP-OES in mushroom samples from around thermal power plant in Muğla, Turkey. Bulletin of Environmental Contamination and Toxicology, 87(3), 276–281.

  • Kumar, M., Furumai, H., Kurisu, F., & Kasuga, I. (2013). Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma, 211–212, 8–17. https://doi.org/10.1016/j.geoderma.2013.07.004

    Article  CAS  Google Scholar 

  • Lima, C. U. J. O., Gris, E. F., & Karnikowski, M. G. O. (2016). Antimicrobial properties of the mushroom Agaricus blazei – integrative review. Rev. Bras. Farmacogn., 26, 780–786. https://doi.org/10.1016/j.bjp.2016.05.013

    Article  Google Scholar 

  • Liu, B., Huang, Q., Cai, H., Guo, X., Wang, T., & Gui, M. (2015). Study of heavy metal concentrations in wild edible mushrooms in Yunnan Province, China. Food Chemistry, 188, 294–300. https://doi.org/10.1016/j.foodchem.2015.05.010

    Article  CAS  Google Scholar 

  • Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Frontiers in Plant Science, 7, 1–19. https://doi.org/10.3389/fpls.2016.00918

    Article  Google Scholar 

  • Malinovsky, D., & Kashulin, N. A. (2016). Vanadium isotope ratio measurements in fruit-bodies of: Amanita muscaria. Analytical Methods, 8, 5921–5929. https://doi.org/10.1039/C6AY01436D

    Article  CAS  Google Scholar 

  • Mallikarjuna, S. E., Ranjini, A., Haware, D. J., Vijayalakshmi, M. R., Shashirekha, M. N., & Rajarathnam, S. (2013). Mineral composition of four edible mushrooms. Journal of Chemistry, 2013, 805284. https://doi.org/10.1155/2013/805284

  • Mattila, P., Könkö, K., Eurola, M., Pihlava, J. M., Astola, J., Vahteristo, L., Hietaniemi, V., Kumpulainen, J., Valtonen, M., & Piironen, V. (2001). Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. Journal of Agricultural and Food Chemistry, 49(5), 2343–2348.

  • Mattila, P., Salo-Väänänen, P., Könkö, K., Aro, H., & Jalava, T. (2002). Basic composition and amino acid contents of mushrooms cultivated in Finland. Journal of Agricultural and Food Chemistry, 50(22), 6419–6422.

  • Mędyk, M., Loganathan, B., Bielawski, L., & Falandysz, J. (2018). Inorganic elemental concentrations in birch bolete mushroom (Leccinum scabrum) and top soil: contamination profiles, bioconcentation and annual variations. Journal of Environmental Science and Health, Part B, 53(12), 831–839.

  • Melgar, M. J., Alonso, J., & García, M. A. (2016). Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food and Chemical Toxicology, 88, 13–20. https://doi.org/10.1016/j.fct.2015.12.002

    Article  CAS  Google Scholar 

  • Melgar, M. J., Alonso, J., Pérez-López, M., & García, M. A. (1998). Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. J Environ Sci Heal, Part B Pestic Food Contam Agric Wastes, 33, 439–455. https://doi.org/10.1080/03601239809373156

    Article  CAS  Google Scholar 

  • Mishra, J., Singh, R., & Arora, N. K. (2017). Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Frontiers in Microbiology, 8, 1–7. https://doi.org/10.3389/fmicb.2017.01706

    Article  CAS  Google Scholar 

  • Mleczek, M., Niedzielski, P., Kalac, P., Siwulski, M., Rzymski, P., & Ga˛secka, M. . (2015). Levels of platinum group elements and rare-earth elements in wild mushroom species growing in Poland. Food Addit Contam Part A, 33(1), 86–94. https://doi.org/10.1080/19440049.2015.1114684

    Article  CAS  Google Scholar 

  • Mleczek, M., Niedzielski, P., Kalač, P., Budka, A., Siwulski, M., Gąsecka, M., Rzymski, P., Magdziak, Z., & Sobieralski, K. (2016). Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environmental Science and Pollution Research, 23(16), 16280–16295. https://doi.org/10.1007/s11356-016-6760-8

    Article  CAS  Google Scholar 

  • Mleczek, M., Siwulski, M., Rzymski, P., Niedzielski, P., Gąsecka, M., Jasińska, A., Budzyńska, S., & Budka, A. (2017). Multi-elemental analysis of Lentinula edodes mushrooms available in trade. Journal of Environmental Science and Health, Part B, 52(3), 196–205. https://doi.org/10.1080/03601234.2017.1261551

    Article  CAS  Google Scholar 

  • Mleczek, M., Magdziak, Z., Goliński, P., Siwulski, M., & Stuper-Szablewska, K. (2013). Concentrations of minerals in selected edible mushroom species growing in Poland and their effect on human health. Acta Scientiarum Polonorum Technologia Alimentaria, 12(2), 203–214.

    CAS  Google Scholar 

  • Mleczek, M., Siwulski, M., Budka, A., Mleczek, P., Budzyńska, S., Szostek, M., Kuczyńska-Kippen, N., Kalač, P., Niedzielski, P., Gąsecka, M., Goliński, P., Magdziak, Z., & Rzymski, P. (2021). Toxicological risks and nutritional value of wild edible mushroom species -a half-century monitoring study. Chemosphere, 263, 128095. https://doi.org/10.1016/j.chemosphere.2020.128095

    Article  CAS  Google Scholar 

  • Mogîldea, D. (2017). Bioaccumulation of toxic heavy metals in mushrooms - a review. Oltenia Journal for Studies in Natural Sciences, 32(2), 157–163.

  • Mohammad, J., Khan, S., Shah, M. T., & Islam-ud-din, A. A. (2015). Essential and nonessential metal concentrations in morel mushroom (Morchella esculenta) in Dir-Kohistan, Pakistan. Pak. J. Bot. SI., (47), 133–138.

  • Mudgal, V., Madaan, N., Mudgal, A., Singh, R., & Mishra, S. (2010). Effect of toxic metals on human health. Open Nutraceut J, 3, 94–99.

    CAS  Google Scholar 

  • Nharingo, T., Ndumo, T., & Moyo, M. (2015). Human health risks due to heavy metals through consumption of wild mushrooms from Macheke forest, Rail Block forest and Muganyi communal lands in Zimbabwe. Environmental Monitoring and Assessment, 187(12), 738. https://doi.org/10.1007/s10661-015-4974-8

    Article  CAS  Google Scholar 

  • Niedzielski, P., Mleczek, M., Budka, A., Rzymski, P., Siwulski, M., Jasińska, A., Gąsecka, M., & Budzyńska, S. (2017). A screening study of elemental composition in 12 marketable mushroom species accessible in Poland. European Food Research and Technology, 243(10), 1759–1771.

  • Nnorom, I. C. (2011). Lead and copper in the sclerotium of the mushroom Pleurotus tuber-regium (Osu): assessment of contribution to dietary intake in southeastern Nigeria. Toxicological & Environmental Chemistry, 93(7), 1359–1367.

  • Nnorom, I. C., Eze, S. O., & Ukaogo, P. O. (2020). Mineral contents of three wild-grown edible mushrooms collected from forests of south eastern Nigeria: An evaluation of bioaccumulation potentials and dietary intake risks. Scientific African, 8, e00163.

  • Nnorom, I. C., Jarzyńska, G., Drewnowska, M., Dryżałowska, A., Kojta, A., Pankavec, S., & Falandysz, J. (2013). Major and trace elements in sclerotium of Pleurotus tuber-regium (Ósū) mushroom—dietary intake and risk in southeastern Nigeria. Journal of Food Composition and Analysis, 29(1), 73–81.

  • Nnorom, I. C., Jarzyńska, G., Falandysz, J., Drewnowska, M., Okoye, I., & Oji-Nnorom, C. G. (2012b to 2012). Occurrence and accumulation of mercury in two species of wild grown Pleurotus mushrooms from Southeastern Nigeria. Ecotoxicology and Environmental Safety, 84, 78–83. https://doi.org/10.1016/j.ecoenv.2012.06.024

    Article  CAS  Google Scholar 

  • Nnorom, I. C., Jarzyńska, G., Falandysz, J., Drewnowska, M., Pankavec, S., & Kojta, A. K. (2012a to 2013). Analysis of twenty major and trace elements in sclerotium of Pleurotus tuber-regium (Ósū) mushroom from Southeastern Nigeria. Journal of Food Composition and Analysis, 29(1), 73–81.

  • Nnorom, I. C., Ukaogo, O. P., & Okereke, S. C. (2016). Trace element content of Lentinus squarrusulus mushroom collected from Aguata in Anambra State, Nigeria. Journal of Environmental Science, Toxicology and Food Technology, 10, 47–50.

  • Nriagu, J. O. (1996). A History of Global Metal Pollution. Science, 80(272), 223. https://doi.org/10.1126/science.272.5259.223

    Article  Google Scholar 

  • O’Brien, M., Hiraide, M., Ohmae, Y., Nihei, N., Miura, S., & Tanoi, K. (2019). Efficient sampling of shiitake-inoculated oak logs to determine the log-to-mushroom transfer factor of stable cesium. PeerJ, 7, e7825. https://doi.org/10.7717/peerj.7825

    Article  CAS  Google Scholar 

  • Ooi, V. E., & Liu, F. (2000). Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Current Medicinal Chemistry, 7(7), 715–729.

  • Orita, M., Kimura, Y., Taira, Y., Fukuda, T., Takahashi, J., Gutevych, O., Chornyi, S., Kudo, T., Yamashita, S., Takamura, N. (2018). Activities concentration of radiocesium in wild mushroom collected in Ukraine 30 years after the Chernobyl power plant accident. PeerJ, 6:e4222; https://doi.org/10.7717/peerj.4222

  • Osarenkhoe, O. O., John, O. A., & Theophilus, D. A. (2014). Ethnomycological conspectus of West African mushrooms: an awareness document. Advances in Microbiology, 4(1), 39. https://doi.org/10.4236/aim.2014.41008

    Article  Google Scholar 

  • Pelkonen, R., Alfthan, G., & Järvinen, O. (2006). Cadmium, lead, arsenic and nickel in wild edible mushrooms. The Finnish Environment, 17, 5–60.

  • Petkovšek, S. A. S., & Pokorny, B. (2013). Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Science of the Total Environment, 443, 944–954. https://doi.org/10.1016/j.scitotenv.2012.11.007

    Article  CAS  Google Scholar 

  • Quarcoo, A., & Adotey, G. (2013). Determination of heavy metals in Pleurotus ostreatus (Oyster mushroom) and Termitomyces clypeatus (Termite mushroom) sold on selected markets in Accra. Ghana. Mycosphere, 4(5), 960–967. https://doi.org/10.5943/mycosphere/4/5/9

    Article  Google Scholar 

  • Rahi, D. K., & Malik, D. (2016). Diversity of mushrooms and their metabolites of nutraceutical and therapeutic significance. Journal of Mycology, 2016, 7654123. https://doi.org/10.1155/2016/7654123

  • Rasalanavho, M., Moodley, R., & Jonnalagadda, S. B. (2019). Elemental distribution including toxic elements in edible and inedible wild growing mushrooms from South Africa. Environmental Science and Pollution Research., 26(8), 7913–7925. https://doi.org/10.1007/s11356-019-04223-0

    Article  CAS  Google Scholar 

  • Rodushkin, I., Pallavicini, N., Engström, E., Sörlin, D., Öhlander, B., Ingri, J., & Baxter, D. C. (2016). Assessment of the natural variability of B, Cd, Cu, Fe, Pb, Sr, Tl and Zn concentrations and isotopic compositions in leaves, needles and mushrooms using single sample digestion and two-column matrix separation. Journal of Analytical Atomic Spectrometry, 31, 220–233. https://doi.org/10.1039/C5JA00274E

    Article  CAS  Google Scholar 

  • Rzymski, P., Mleczek, M., Siwulski, M., Jasińska, A., Budka, A., Niedzielski, P., Kalač, P., Gąsecka, M., & Budzyńska, S. (2017). Multielemental analysis of fruit bodies of three cultivated commercial Agaricus species. Journal of Food Composition and Analysis, 59, 170–178. https://doi.org/10.1016/j.jfca.2017.02.011

    Article  CAS  Google Scholar 

  • Rzymski, P., Mleczek, M., Siwulski, M., & Ga˛secka, M., Niedzielski, P. . (2016). The risk of high mercury accumulation in edible mushrooms cultivated on contaminated substrates. Journal of Food Composition and Analysis, 51, 55–60. https://doi.org/10.1016/j.jfca.2016.06.009

    Article  CAS  Google Scholar 

  • SAC [Standardization Administration of China]. (2005). Standardization Administration of the People’s Republic of China. Maximum levels of contaminants in Foods; GB2762-2005.

  • Sanganyado, E., & Gwenzi, W. (2019). Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Science of the Total Environment, 669, 785–797. https://doi.org/10.1016/j.scitotenv.2019.03.162

    Article  CAS  Google Scholar 

  • Schlecht, M. T., & Säumel, I. (2015). Wild growing mushrooms for the Edible City? Cadmium and lead content in edible mushrooms harvested within the urban agglomeration of Berlin Germany. Environmental Pollution, 204, 298–305. https://doi.org/10.1016/j.envpol.2015.05.018

    Article  CAS  Google Scholar 

  • Shao, Y., Wang, J., Chen, X., Wu, Y. (2014). The consolidation of food contaminants standards in China. Food Control, 43, 213–216.

  • Širić, I., Humar, M., Kasap, A., Kos, I., Mioč, B., & Pohleven, F. (2016a). Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environmental Science and Pollution Research, 23, 18239–18252. https://doi.org/10.1007/s11356-016-7027-0

    Article  CAS  Google Scholar 

  • Širić, I., Žurga, P., Barkić, D., & Malenica Staver, M. (2015). Trace element contents in the edible mushroom boletus edulis bull. Ex fries. Agriculturae Conspectus Scientificus, 80(4), 223–227.

  • Širić, I., Žurga, P., Barkić, D. and Malenica Staver, M. (2016b). Trace Element Contents in the Edible Mushroom Boletus edulis Bull. ex Fries. Agriculturae Conspectus Scientificus (ACS), 80(4), 223–227.

  • Sithole, S. C., Mugivhisa, L. L., Amoo, S. O., & Olowoyo, J. O. (2017). Pattern and concentrations of trace metals in mushrooms harvested from trace metal-polluted soils in Pretoria South Africa. South African J. Bot, 108, 315–320. https://doi.org/10.1016/j.sajb.2016.08.010

    Article  CAS  Google Scholar 

  • Siwulski, M., Mleczek, M., Rzymski, P., Budka, A., Jasińska, A., Niedzielski, P., Kalač, P., Gąsecka, M., Budzyńska, S., & Mikołajczak, P. (2017). Screening the Multi-Element Content of Pleurotus Mushroom Species Using inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES). Food Analytical Methods, 10, 487–496. https://doi.org/10.1007/s12161-016-0608-1

    Article  Google Scholar 

  • Siwulski, M., Budka, A., Rzymski, P., Gąsecka, M., Kalač, P., Budzyńska, S., Magdziak, Z., Niedzielski, P., Mleczek, P., & Mleczek, M. (2020). Worldwide basket survey of multielemental composition of white button mushroom Agaricus bisporus. Chemosphere, 239, 124718. https://doi.org/10.1016/j.chemosphere.2019.124718

    Article  CAS  Google Scholar 

  • Skrkal, J., Rulık, P., Fantınova, K., Burianova, J., & Helebrant, J. (2013). Long-term 137Cs Activity Monitoring of Mushrooms in Forest Ecosystems of the Czech Republic. Radiation Protection Dosimetry, 157(4), 579–584. https://doi.org/10.1093/rpd/nct172

    Article  CAS  Google Scholar 

  • Strumińska-Parulska, D. I., Olszewski, G., & Falandysz, J. (2017). 210Po and 210Pb bioaccumulation and possible related dose assessment in parasol mushroom (Macrolepiota procera). Environmental Science and Pollution Research, 24, 26858–26864. https://doi.org/10.1007/s11356-017-0458-4

    Article  CAS  Google Scholar 

  • Sumba, J. D. (2005). GACOCA Formulation of East African wild mushrooms show promise in combating Kaposi’s sarcoma and HIV/AIDS. International Journal of Medicinal Mushrooms, 7(3), 473–474. https://doi.org/10.1615/IntJMedMushrooms.v7.i3.1040

    Article  Google Scholar 

  • Svoboda, L., Havlíčková, B., & Kalač, P. (2006). Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chemistry, 96, 580–585. https://doi.org/10.1016/j.foodchem.2005.03.012

    Article  CAS  Google Scholar 

  • Teke, N. A., Kinge, T. R., Bechem, E., Nji, T. M., Ndam, L. M., & Mih, A. M. (2018). Ethnomycological study in the kilum-ijim mountain forest, northwest region, Cameroon. Journal of Ethnobiology and Ethnomedicine, 14(1), 1–12.

  • Thomas, P. A., Geraldine, P., & Jayakumar, T. (2014). Pleurotus ostreatus, an edible mushroom, enhances glucose 6-phosphate dehydrogenase, ascorbate peroxidase and reduces xanthine dehydrogenase in major organs of aged rats. Pharmaceutical Biology, 52(5), 646–654.

  • Tuo, F., Zhang, J., Li, W., Yao, S., Zhou, Q., & Li, Z. (2017). Radionuclides in mushrooms and soil-to-mushroom transfer factors in certain areas of China. Journal of Environmental Radioactivity, 180, 59–64. https://doi.org/10.1016/j.jenvrad.2017.09.023

    Article  CAS  Google Scholar 

  • Tuzen, M., Sesli, E., & Soylak, M. (2007). Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control, 18(7), 806–810.

  • Tyler, G. (2004). Rare earth elements in soil and plant systems - a review. Plant and Soil, 267, 191–206. https://doi.org/10.1007/s11104-005-4888-2

    Article  CAS  Google Scholar 

  • Udochukwu, U., Nekpen, B. O., Udinyiwe, O. C., & Omeje, F. I. (2014). Bioaccumulation of Heavy metals and pollutants by edible mushroom collected from Iselu market Benin-city. International Journal of Current Microbiology and Applied Sciences, 3(10), 52–7.

  • Ugbogu, E. A., Akubugwo, E. I., Ude, V. C., Emmanuel, O., Okomba, N. O., Ibe, C., & Onyero, O. (2019). Safety evaluation of an aqueous extract of Termitomyces robustus (Agaricomycetes) in Wistar rats. International Journal of Medicinal Mushrooms, 21(2), 193–203. https://doi.org/10.1615/IntJMedMushrooms.2018029737

  • Valverde, M. E., Hernández-Pérez, T., & Paredes-López, O. (2015). Edible mushrooms: improving human health and promoting quality life. International Journal of Microbiology, 2015, 376387. https://doi.org/10.1155/2015/376387

  • Wang, J., Liu, Y. M., Cao, W., Yao, K., Liu, Z., & Guo, J. (2012). Anti-inflammation and antioxidant effect of Cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Metabolic Brain Disease, 27, 159–165.

  • Wasser, S. (2014). Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomedical Journal, 37(6), 345–356. https://doi.org/10.4103/2319-4170.138318

    Article  Google Scholar 

  • Wasser, S. P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60(3), 258–274.

  • Wasser S. P., Weis A. L. (1999). Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Critical Reviews in Immunology, 19(1), 65-96.

  • Weller, A., Zok, D., & Steinhauser, G. (2019). Uptake and elemental distribution of radiosilver 108m Ag and radiocesium 137 Cs in shiitake mushrooms (Lentinula edodes). Journal of Radioanalytical and Nuclear Chemistry, 322(3), 1761–1769.

    Article  CAS  Google Scholar 

  • Yamada, T. (2013). Mushrooms: radioactive contamination of widespread mushrooms in Japan. T.M. Nakanishi and K. Tanoi (eds.), In Agricultural Implications of the Fukushima Nuclear Accident. https://doi.org/10.1007/978-4-431-54328-2_15

  • Yang, W., Guo, F., & Wan, Z. (2013). Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi Journal of Biological Sciences, 20(4), 333–338.

  • Yilmaz, A., Yıldız, S., Çelik, A., & Çevik, U. (2016). Determination of heavy metal and radioactivity in Agaricus campestris mushroom collected from Kahramanmaraş and Erzurum provinces. Turkish Journal of Agriculture-Food Science and Technology, 4(3), 208–215.

    Article  Google Scholar 

  • Yilmaz, N., Solmaz, M., Türkekul, İ., & Elmastaş, M. (2006). Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chemistry, 99(1), 168–174.

  • Yin, J. Z., & Zhou, L. X. (2008). Analysis of nutritional components of 4 kinds of wild edible fungi in Yunnan. Food Res. Develop., 29, 133–136.

  • Zalewska, T., Cocchi, L., & Falandysz, J. (2016). Radiocaesium in Cortinarius spp. mushrooms in the regions of the Reggio Emilia in Italy and Pomerania in Poland. Environmental Science and Pollution Research, 23, 23169–23174. https://doi.org/10.1007/s11356-016-7541-0

    Article  CAS  Google Scholar 

  • Zhang, J., Li, T., Yang, Y. L., Liu, H. G., & Wang, Y. Z. (2015). Arsenic concentrations and associated health risks in Laccaria mushrooms from Yunnan (SW China). Biological Trace Element Research, 164(2), 261–266. https://doi.org/10.1007/s12011-014-0213-3

    Article  CAS  Google Scholar 

  • Zsigmond, A. R., Kántor, I., May, Z., Urák, I., & Héberger, K. (2020). Elemental composition of Russula cyanoxantha along an urbanization gradient in Cluj-Napoca (Romania). Chemosphere, 238, 124566. https://doi.org/10.1016/j.chemosphere.2019.124566

    Article  CAS  Google Scholar 

  • Zsigmond, A. R., Varga, K., Kántor, I., Urák, I., May, Z., & Héberger, K. (2018). Elemental composition of wild growing Agaricus campestris mushroom in urban and peri-urban regions of Transylvania (Romania). Journal of Food Composition and Analysis, 72, 15–21. https://doi.org/10.1016/j.jfca.2018.05.006

    Article  CAS  Google Scholar 

  • Zhang, M., Cheung, P. C., Zhang, L., Chiu, C. M., & Ooi, V. E. (2004). Carboxymethylated β-glucans from mushroom sclerotium of Pleurotus tuberregium as novel water-soluble anti-tumor agent. Carbohydrate Polymers, 57(3), 319–325.

  • Zhang, N., Chen, H., Zhang, Y., Ma, L., & Xu, X. (2013). Comparative studies on chemical parameters and antioxidant properties of stipes and caps of shiitake mushroom as affected by different drying methods. Journal of the Science of Food and Agriculture, 93(12), 3107–3113.

Download references

Acknowledgements

We thank the British Ecological Society (BES) Ecologists in Africa Grant No. 5774-6818 for funding WG on a related project which motivated this work, “The Potential of Native Plants of the Ultramafic Great Dyke of Zimbabwe for the Phytoremediation and Restoration of Metalliferrous Mine Wastes.” However, BES played no role in the research process and decision to publish the work.

Author information

Authors and Affiliations

Authors

Contributions

WG conceptualized the idea, designed research, analyzed data, and drafted and finalized the manuscript. Other authors contributed equally to research design, data analysis, and draft manuscript compilation.

Corresponding authors

Correspondence to Willis Gwenzi or Nhamo Chaukura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gwenzi, W., Tagwireyi, C., Musiyiwa, K. et al. Occurrence, behavior, and human exposure and health risks of potentially toxic elements in edible mushrooms with focus on Africa. Environ Monit Assess 193, 302 (2021). https://doi.org/10.1007/s10661-021-09042-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09042-w

Keywords

Navigation