Skip to main content
Log in

Using a post-version continuum distorted wave formalism for calculation of the fully differential cross section of helium atom single ionization by proton impact

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, the fully differential cross section of single ionization of helium atom is calculated by fast proton impact. The calculations are done as a four-body formalism and by using a post-version continuum distorted wave theory with considering symmetric wave functions in the both initial and final channels. The ionization is considered from the ground and \(2^{1}S\) excited states of helium atom. In order to investigate the role of the static electronic correlations, the calculations are performed by single-parameter Hylleraas and two-parameter Silverman as the ground state of helium atom wave functions. The results of the present theory are compared with the experiment in 1MeV proton impact energy and various values of the ejected electron energy and momentum transfer in the scattering and azimuthal planes. The results show that the present theory is able to predict the binary and recoil peaks as well as the experiment for ejected electron energies and momentum transfers are discussed in this manuscript.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.S. Was, Fundamentals of Radiation Materials Science (Springer. Verlag, New York, 2017)

    Book  Google Scholar 

  2. H.K. Kim, J. Titze, M. Schoffler, F. Trinter, M. Waitz, J. Voigtsberger, H. Sann, M. Meckel, C. Stuck, U. Lenz, M. Odenweller et al., Proc. Natl. Acad. Sci. USA 108(29), 11821 (2011)

    Article  ADS  Google Scholar 

  3. D. Tseliakhovich, C.M. Hirata, K. Heng, Mon. Not. R. Astron. Soc 422, 2357 (2012)

    Article  ADS  Google Scholar 

  4. S. Sen, P. Mandal, P.K. Mukherjee, Eur. Phys. J. D 62, 379 (2011)

    Article  ADS  Google Scholar 

  5. H. Ehrhardt, K. Jung, G. Knoth, P. Schlemmer, Phys. D. 1, 3 (1986)

    Article  ADS  Google Scholar 

  6. H. Ehrhardt, M. Schulz, T. Tekaat, K. Willmann, Phys. Rev. Lett. 22, 89 (1969)

    Article  ADS  Google Scholar 

  7. J. Ullrich, R. Moshammer, R. Dorner, O. Jagutzki, V. Mergel, H. Schmidt-Bocking, L. Spielberger, J. Phys. B 30, 2917 (1997)

    Article  ADS  Google Scholar 

  8. R. Dorner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, H. Schmidt, Backing. Phys. Rep. 330, 95 (2000)

    Article  ADS  Google Scholar 

  9. J. Ullrich, R. Moshammer, A. Dorn, R. Dorner, L.P.H. Schmidt, Schmidt-Bocking. Rep. Prog. Phys. 66, 1463 (2003)

    Article  ADS  Google Scholar 

  10. D. Misra, H.T. Schmidt, M. Gudmundsson, D. Fischer, N. Haag, H.A.B. Johansson, A. Kallberg, B. Najjari, P. Reinhed, R. Schuch, M. Schoffler, A. Simonsson, A.B. Voitkiv, H. Cederquist, Phys. Rev. Lett. 102 (2009)

  11. L.P.H. Schmidt, T. Jahnke, A. Czasch, M. Schoffler, H. Schmidt-Bocking, R. Dorner, Phys. Rev. Lett. 108, 073202 (2012)

    Article  ADS  Google Scholar 

  12. O. Chuluunbaatar, K.A. Kouzakov, S.A. Zaytsev, A.S. Zaytsev, V.L. Shablov, Yu.V. Popov, H. Gassert, M. Waitz, H.K. Kim, T. Bauer et al., Phys. Rev. A. 99 (2019)

  13. D.H. Madison, M. Schulz, S. Jones, M. Foster, R. Moshammer, J. Ullrich, J. Phys. B: At. Mol. Opt. Phys. 35, 3297 (2002)

    Article  ADS  Google Scholar 

  14. M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D.H. Madison, S. Jones, J. Ullrich, Nature 422, 48 (2003)

    Article  ADS  Google Scholar 

  15. D.H. Madison, D. Fischer, M. Foster, M. Schulz, R. Moshammer, S. Jones, J. Ullrich, Phys. Rev. Lett. 91 (2003)

  16. M. Foster, D.H. Madison, J.L. Peacher, M. Schulz, S. Jones, D. Fischer, R. Moshammer, J. Ullrich, J. Phys. B: At. Mol. Opt. Phys. 37, 1565 (2004)

    Article  ADS  Google Scholar 

  17. A.B. Voitkiv, B. Najjari, Phys. Rev. A. 79 (2009)

  18. H. Gassert, O. Chuluunbaatar, M. Waitz, F. Trinter, H.K. Kim, T. Bauer, A. Laucke, Ch. Muller, J. Voigtsberger, M. Weller et al., Phys. Rev. Lett. 116 (2016)

  19. A.B. Voitkiv, Phys. Rev. A. 95 (2017)

  20. N.V. Maydanyuk, A. Hasan, M. Foster, B. Tooke, E. Nanni, D.H. Madison, M. Schulz, Phys. Rev. Lett. 94 (2005)

  21. I.B. Abdurakhmanov, A.S. Kadyrov, Sh.U. Alladustov, I. Bray, K. Bartschat, Phys. Rev. A. 100 (2019)

  22. S. Amiri Bidvari, R. Fathi, Eur. Phys. J. D. 74, 55 (2020)

    Article  ADS  Google Scholar 

  23. N. Stolterfoht, R. D. DuBois and R. D. Rivarola, (Springer, Berlin, 1997) Electron emission in heavy ion-atom collisions

  24. B.S. Nesbitt, M.B. Shah, S.F.C.O. Rourke, C. McGrath, J. Geddes, D.S.F. Crothers, J. Phys. B: At. Mol. Opt. Phys. 33, 637 (2000)

    Article  ADS  Google Scholar 

  25. S. Azizan, R. Fathi, F. Shojaei, Eur. Phys. J. D. 71, 21 (2017)

    Article  ADS  Google Scholar 

  26. D. Belkic, I. Mancev, J. Hanssen, Rev. Mod. Phys. 80, 249 (2008)

    Article  ADS  Google Scholar 

  27. M.F. Ciappina, W.R. Cravero, M. Schulz, J. Phys. B?:At. Mol. Opt. phys. 40, 2577 (2007)

    Article  ADS  Google Scholar 

  28. I.M. Cheshire, Proc. Phys. Soci. 84(1), 89 (1964)

    Article  ADS  Google Scholar 

  29. M.F. Ciappina, W.R. Cravero, C.R. Garibotti, J. Phys. B: At. Mol. Opt. Phys. 36, 3775 (2003)

    Article  ADS  Google Scholar 

  30. M. Dhital, S. Bastola, A. Silvus, B.R. Lamichhan, E. Ali, M.F. Ciappina, R. Lomsadze, A. Hasan, D.H. Madison, M. Schulz, Phys. Rev. A. 100, 32707 (2019)

    Article  ADS  Google Scholar 

  31. Y.H. Duan, S.Y. Sun, X.F. Jia, EPL 110, 13001 (2015)

    Article  ADS  Google Scholar 

  32. P.D. Fainstein, L. Gulyas, J. Phys. B: At. Mol. Opt. Phys. 38, 317 (2005)

    Article  ADS  Google Scholar 

  33. R.T. Pedlow, S.F.C.O. Rourke, D.S.F. Crothers, Phys. Rev. A. 72 (2005)

  34. K.R. Greider, L.R. Dodd, Phys. Rev. 146, 671 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  35. L.R. Dodd, K.R. Greider, Phys. Rev. 146, 675 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Belkic, Quantum Theory of High-Energy Ion-Atom Collisions (Taylor Francis, London, 2008).

    Book  Google Scholar 

  37. I. Mancev, N. Milojevic, D. Belkic, Phys. Rev. A. 91, 062705 (2015)

    Article  ADS  Google Scholar 

  38. J. Van Den Bos, Phys. Rev. 181, 191 (1969)

    Article  ADS  Google Scholar 

  39. S. Amiri Bidvari, R. Fathi, Eur. Phys. J. Plus. 136(1), 190 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank O. Chuluunbaatar and I. B. Abdurakhmanov for providing the experimental and theoretical results of references [12, 18, 21] in tabulated form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidvari, S.A., Fathi, R. Using a post-version continuum distorted wave formalism for calculation of the fully differential cross section of helium atom single ionization by proton impact. Eur. Phys. J. Plus 136, 453 (2021). https://doi.org/10.1140/epjp/s13360-021-01456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01456-2

Navigation