Skip to main content
Log in

Fast and efficient recursive algorithm of Meixner polynomials

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Meixner polynomials (MNPs) and their moments are considered significant feature extraction tools because of their salient representation in signal processing and computer vision. However, the existing recurrence algorithm of MNPs exhibits numerical instabilities of coefficients for high-order polynomials. This paper proposed a new recurrence algorithm to compute the coefficients of MNPs for high-order polynomials. The proposed algorithm is based on a derived identity for MNPs that reduces the number of the utilized recurrence times and the computed number of MNPs coefficients. To minimize the numerical errors, a new form of the recurrence algorithm is presented. The proposed algorithm computes \(\sim \)50% of the MNP coefficients. A comparison with different state-of-the-art algorithms is performed to evaluate the performance of the proposed recurrence algorithm in terms of computational cost and reconstruction error. In addition, an investigation is performed to find the maximum generated size. The results show that the proposed algorithm remarkably reduces the computational cost and increases the generated size of the MNPs. The proposed algorithm shows an average improvement of \(\sim \)77% in terms of computation cost. In addition, the proposed algorithm exhibits an improvement of \(\sim \)1269% in terms of generated size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdulhussain, S.H., Ramli, A.R., Mahmmod, B.M., Saripan, M.I., Al-Haddad, S.A.R., Jassim, W.A.: Shot boundary detection based on orthogonal polynomial. Multimed. Tools Appl. 78(14), 20361–20382 (2019)

    Article  Google Scholar 

  2. Pee, C.Y., Ong, S., Raveendran, P.: Numerically efficient algorithms for anisotropic scale and translation Tchebichef moment invariants. Pattern Recogn. Lett. 92, 68–74 (2017)

    Article  Google Scholar 

  3. Abdulhussain, S.H., Ramli, A.R., Mahmmod, B.M., Al-Haddad, S.A.R., Jassim, W.A.: Image Edge Detection Operators based on Orthogonal Polynomials. Int. J. Image Data Fusion 8(3), 293–308 (2017)

    Google Scholar 

  4. Mahmmod, B.M., Bin Ramli, A.R., Abdulhussain, S.H., Al-Haddad, S.A.R., Jassim, W.A.: Signal compression and enhancement using a new orthogonal-polynomial-based discrete transform. IET Signal Process. 12(1), 129–142 (2018)

    Article  Google Scholar 

  5. Abdulhussain, S.H., Ramli, A.R., Hussain, A.J., Mahmmod, B.M., Jassim, W.A.: Orthogonal polynomial embedded image kernel. In: Proceedings of the international conference on information and communication technology - ICICT ’19, ICICT ’19, pp. 215–221. ACM Press, New York, New York, USA (2019)

  6. Mizel, A.K.E.: Orthogonal functions solving linear functional differential equationsusing chebyshev polynomial. Baghdad Sci. J. 5(1), 143–148 (2008)

    Article  Google Scholar 

  7. Mahmmod, B.M., Ramli, A.R., Abdulhussian, S.H., Al-Haddad, S.A.R., Jassim, W.A.: Low-distortion MMSE speech enhancement estimator based on Laplacian prior. IEEE Access 5(1), 9866–9881 (2017)

    Article  Google Scholar 

  8. Mahmmod, B.M., Ramli, A.R., Baker, T., Al-Obeidat, F., Abdulhussain, S.H., Jassim, W.A.: Speech enhancement algorithm based on super-gaussian modeling and orthogonal polynomials. IEEE Access 7, 103485–103504 (2019)

    Article  Google Scholar 

  9. Abdulhussain, S.H., Rahman Ramli, A., Mahmmod, B.M., Iqbal Saripan, M., Al-Haddad, S., Baker, T., Flayyih, W.N., Jassim, W.A.: A Fast feature extraction algorithm for image and video processing. In: 2019 international joint conference on neural networks (IJCNN), pp. 1–8. IEEE (2019). https://doi.org/10.1109/IJCNN.2019.8851750

  10. Akhmedova, F., Liao, S.: Face recognition with discrete orthogonal moments. Recent Adv. Comput. Vis. pp. 189–209. Springer (2019)

  11. Radeaf, H.S., Mahmmod, B.M., Abdulhussain, S.H., Al-Jumaeily, D.: A steganography based on orthogonal moments. In: Proceedings of the international conference on information and communication technology - ICICT ’19, ICICT ’19, pp. 147–153. ACM Press, New York, New York, USA (2019)

  12. Ming-Kuei, Hu.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  13. Batioua, I., Benouini, R., Zenkouar, K., Zahi, A., et al.: 3d image analysis by separable discrete orthogonal moments based on krawtchouk and tchebichef polynomials. Pattern Recogn. 71, 264–277 (2017)

    Article  Google Scholar 

  14. Teague, M.R.: Image analysis via the general theory of moments. JOSA 70(8), 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  15. Khotanzad, A., Hong, Y.: Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)

    Article  Google Scholar 

  16. Chong, C.W., Raveendran, P., Mukundan, R.: Translation and scale invariants of Legendre moments. Pattern Recogn. 37(1), 119–129 (2004)

    Article  Google Scholar 

  17. Xia, T., Zhu, H., Shu, H., Haigron, P., Luo, L.: Image description with generalized pseudo-Zernike moments. J. Opt. Soc. Am. A 24(1), 50–59 (2007)

    Article  Google Scholar 

  18. Liao, S., Chiang, A., Lu, Q., Pawlak, M.: Chinese character recognition via gegenbauer moments. In: Object recognition supported by user interaction for service robots, vol. 3, pp. 485–488. IEEE (2002)

  19. Mukundan, R., Ong, S., Lee, P.: Image analysis by Tchebichef moments. IEEE Trans Image Process. 10(9), 1357–1364 (2001)

    Article  MathSciNet  Google Scholar 

  20. Yap, Pew-Thian., Paramesran, R., Ong, Seng-Huat.: Image analysis by krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  21. Mahmmod, B.M., Abdul-Hadi, A.M., Abdulhussain, S.H., Hussien, A.: On computational aspects of Krawtchouk polynomials for high orders. J. Imaging 6(8), 81 (2020)

    Article  Google Scholar 

  22. Abdulhussain, S.H., Ramli, A.R., Al-Haddad, S.A.R., Mahmmod, B.M., Jassim, W.A.: On computational aspects of Tchebichef polynomials for higher polynomial order. IEEE Access 5(1), 2470–2478 (2017). https://doi.org/10.1109/ACCESS.2017.2669218

    Article  Google Scholar 

  23. Zhu, H., Liu, M., Shu, H., Zhang, H., Luo, L.: General form for obtaining discrete orthogonal moments. IET Image Process. 4(5), 335 (2010). https://doi.org/10.1049/iet-ipr.2009.0195

    Article  MathSciNet  Google Scholar 

  24. Abdul-Hadi, A.M., Abdulhussain, S.H., Mahmmod, B.M.: On the computational aspects of Charlier polynomials. Cogent Eng. 7(1), 1 (2020)

    Article  Google Scholar 

  25. Yap, P.T., Paramesran, R., Ong, S.H.: Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 2057–2062 (2007)

    Article  Google Scholar 

  26. Camacho-Bello, C., Rivera-Lopez, J.S.: Some computational aspects of Tchebichef moments for higher orders. Recogn. Lett. 112, 332–339 (2018)

    Article  Google Scholar 

  27. Abdulhussain, S.H., Ramli, A.R., Al-Haddad, S.A.R., Mahmmod, B.M., Jassim, W.A.: Fast recursive computation of Krawtchouk polynomials. J. Math. Imaging Vis. 60(3), 285–303 (2018). https://doi.org/10.1007/s10851-017-0758-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Hmimid, A., Sayyouri, M., Qjidaa, H.: Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn. 48(2), 509–521 (2015)

    Article  Google Scholar 

  29. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric orthogonal polynomials and their q-analogues. Springer, Berlin (2010)

    Book  Google Scholar 

  30. Asli, B.H.S., Flusser, J.: Fast computation of Krawtchouk moments. Inf. Sci. 288(1), 73–86 (2014)

    Article  Google Scholar 

  31. Abdulhussain, S.H., Ramli, A.R., Mahmmod, B.M., Saripan, M.I., Al-Haddad, S., Jassim, W.A.: A new hybrid form of Krawtchouk and Tchebichef polynomials: design and application. J. Math. Imaging Vis. 61(4), 555–570 (2019). https://doi.org/10.1007/s10851-018-0863-4

    Article  MathSciNet  MATH  Google Scholar 

  32. Idan, Z.N., Abdulhussain, S.H., Al-Haddad, S.A.R.: A new separable moments based on Tchebichef-Krawtchouk polynomials. IEEE Access 1, 1–1 (2020)

    Google Scholar 

  33. Spanier, J., Oldham, K.B.: An atlas of functions. Hemisphere publishing corporation (1987)

  34. Hahn, B.H., Valentine, D.T.: Essential MATLAB for engineers and scientists: Brian H. Academic Press, Hahn; Daniel T. Valentine. Elsevier (2010)

  35. Jain, A.K.: Fundamentals of digital image processing. Prentice-Hall, Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadiq H. Abdulhussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulhussain, S.H., Mahmmod, B.M. Fast and efficient recursive algorithm of Meixner polynomials. J Real-Time Image Proc 18, 2225–2237 (2021). https://doi.org/10.1007/s11554-021-01093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01093-z

Navigation