Skip to main content
Log in

Ensemble Deep Learning Based on Multi-level Information Enhancement and Greedy Fuzzy Decision for Plant miRNA–lncRNA Interaction Prediction

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are both non-coding RNAs (ncRNAs) and their interactions play important roles in biological processes. Computational methods, such as machine learning and various bioinformatics tools, can predict potential miRNA–lncRNA interactions, which is significant for studying their mechanisms and biological functions. A growing number of RNA interaction predictors for animal have been reported, but they are unreliable for plant due to the differences of ncRNAs in animal and plant. It is urgent to build a reliable plant predictor, especially for cross-species. This paper proposes an ensemble deep learning model based on multi-level information enhancement and greedy fuzzy decision (PmliPEMG) for plant miRNA–lncRNA interaction prediction. The fusion complex features, multi-scale convolutional long short-term memory networks, and attention mechanism are adopted to enhance the sample information at the feature, scale, and model levels, respectively. An ensemble deep learning model is built based on a novel method (greedy fuzzy decision) which greatly improves the efficiency. The multi-level information enhancement and greedy fuzzy decision are verified to have the positive effects on prediction performance. PmliPEMG can be applied to the cross-species prediction. It shows better performance and stronger generalization ability than state-of-the-art predictors and may provide valuable references for related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

RNAfold in ViennaRNA Package is downloaded at https://www.tbi.univie.ac.at/RNA/. PmliPEMG is freely available at https://github.com/kangzhai/PmliPEMG.

References

  1. Guan D, Zhang W, Zhang W, Liu GH, Belmonte JCI (2013) Switching cell fate, ncRNAs coming to play. Cell Death Dis 4:e464. https://doi.org/10.1038/cddis.2012.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M (2017) Non-coding RNAs and their roles in stress response in plant. Genom Proteom Bioinf 15:301–312. https://doi.org/10.1016/j.gpb.2017.01.007

    Article  Google Scholar 

  3. Song F, Cui C, Gao L, Cui Q (2018) miRS: predicting the essentiality of miRNAs with machine learning and sequence features. Bioinformatics 35(6):1053–1054. https://doi.org/10.1093/bioinformatics/bty738

    Article  CAS  Google Scholar 

  4. Song J, Tian S, Yu L, Xing Y, Yang Q, Duan X, Dai Q (2020) AC-Caps: attention based capsule network for predicting RBP binding sites of lncRNA. Interdiscip Sci Comput Life Sci 12:414–423. https://doi.org/10.1007/s12539-020-00379-3

    Article  CAS  Google Scholar 

  5. Yu G, Wang Y, Wang J, Domeniconi C, Guo M, Zhang X (2020) Attributed heterogeneous network fusion via collaborative matrix tri-factorization. Inform Fusion 63:153–165. https://doi.org/10.1016/j.inffus.2020.06.012

    Article  Google Scholar 

  6. Guo G, Liu X, Sun F, Cao J, Huo N, Wuda B et al (2018) Wheat miR9678 affects seed germination by generating phased siRNAs and Modulating abscisic acid/gibberellin signaling. Plant Cell 30:796–814. https://doi.org/10.1105/tpc.17.00842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang L, Lu Y, Ming J, Pan Y, Yu R, Wu Y et al (2020) SNHG16 accelerates the proliferation of primary cardiomyocytes by targeting miRNA-770-5p. Exp Ther Med 20:3221–3227. https://doi.org/10.3892/etm.2020.9083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou X, Cui J, Meng J, Luan Y (2020) Interactions and links among the non-coding RNAs in plants under stresses. Theor Appl Genet 133:3235–3248. https://doi.org/10.1007/s00122-020-03690-1

    Article  CAS  PubMed  Google Scholar 

  9. Zhang P, Lu B, Zhang Q, Xu F, Zhang R, Wang C et al (2020) LncRNA NEAT1 sponges MiRNA-148a-3p to suppress choroidal neovascularization and M2 macrophage polarization. Mol Immunol 127:212–222. https://doi.org/10.1016/j.molimm.2020.08.008

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F et al (2014) Identification of maize long non-coding RNAs responsive to drought stress. PLoS ONE 9(6):e98958. https://doi.org/10.1371/journal.pone.0098958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fukunaga T, Hamada M (2017) RIblast: an ultrafast RNA-RAN interaction prediction system based on a seed-and-extension approach. Bioinformatics 33(17):2666–2674. https://doi.org/10.1093/bioinformatics/btx287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fukunaga T, Iwakiri J, Ono Y, Hamada M (2019) LncRRIsearch: a web server for lncRNA-RNA interaction prediction integrated with tissue-specific expression and subcellular localization data. Front Genet 10:462. https://doi.org/10.3389/fgene.2019.00462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Antonov IV, Mazurov E, Borodovsky M, Medvedeva YA (2019) Prediction of lncRNAs and their interactions with nucleic acids: benchmarking bioinformatics tools. Brief Bioinform 20(2):551–564. https://doi.org/10.1093/bib/bby032

    Article  CAS  PubMed  Google Scholar 

  14. Huang Y, Chan KCC, You Z (2018) Constructing prediction models from expression profiles for large scale lncRNA-miRNA interaction profiling. Bioinformatics 34(5):812–819. https://doi.org/10.1093/bioinformatics/btx672

    Article  CAS  PubMed  Google Scholar 

  15. Huang Y, Huang Z, You Z, Zhu Z, Huang W, Guo J et al (2019) Predicting lncRNA-miRNA interaction via graph convolution auto-encoder. Front Genet 10:758. https://doi.org/10.3389/fgene.2019.00758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang S, Wang Y, Lin Y, Shao D, He K, Huang L (2020) LncMirNet: predicting lncRNA-miRNA interaction based on deep learning of ribonucleic acid sequences. Molecules 25(19):4372. https://doi.org/10.3390/molecules25194372

    Article  CAS  PubMed Central  Google Scholar 

  17. Fan Y, Cui J, Zhu Q (2020) Heterogeneous graph inference based on similarity network fusion for predicting lncRNA-miRNA interaction. RSC Adv 10:11634. https://doi.org/10.1039/C9RA11043G

    Article  CAS  Google Scholar 

  18. Hu P, Huang Y, Chan KCC, You Z (2020) Learning multimodal networks from heterogeneous data for prediction of lncRNA-miRNA interactions. IEEE/ACM Trans Comput Biol Bioinform 17(5):1516–1524. https://doi.org/10.1109/TCBB.2019.2957094

    Article  CAS  Google Scholar 

  19. Liu H, Ren G, Chen H, Liu Q, Yang Y, Zhao Q (2020) Predicting lncRNA-miRNA interactions based on logistic matrix factorization with neighborhood regularized. Knowl-Based Syst 191:105261. https://doi.org/10.1016/j.knosys.2019.105261

    Article  Google Scholar 

  20. Wang W, Guan X, Khan MT, Xiong Y, Wei D (2020) LMI-DForest: a deep forest model towards the prediction of lncRNA-miRNA interactions. Comput Biol Chem 89:107406. https://doi.org/10.1016/j.compbiolchem.2020.107406

    Article  CAS  PubMed  Google Scholar 

  21. Movahedi A, Sun W, Zhang J, Wu X, Mousavi M, Mohammadi K et al (2015) RNA-directed DNA methylation in plants. Plant Cell Rep 34:1857–1862. https://doi.org/10.1007/s00299-015-1839-0

    Article  CAS  PubMed  Google Scholar 

  22. Noviello TMR, Liddo AD, Ventola GM, Spagnuolo A, Aniello SD, Ceccarelli M et al (2018) Detection of long non-coding RNA homology, a comparative study on alignment and alignment-free metrics. BMC Bioinformatics 19:407. https://doi.org/10.1186/s12859-018-2441-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bouba I, Kang Q, Luan Y, Meng J (2019) Predicting miRNA–lncRNA interactions and recognizing their regulatory roles in stress response of plants. Math Biosci 312:67–76. https://doi.org/10.1016/j.mbs.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  24. Kang Q, Meng J, Cui J, Luan Y, Chen M (2020) PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA–lncRNA interaction prediction. Bioinformatics 36(10):2986–2992. https://doi.org/10.1093/bioinformatics/btaa074

    Article  CAS  PubMed  Google Scholar 

  25. Zhang P, Meng J, Luan Y, Liu C (2020) Plant miRNA–lncRNA interaction prediction with the ensemble of CNN and IndRNN. Interdiscip Sci Comput Life Sci 12:82–89. https://doi.org/10.1007/s12539-019-00351-w

    Article  CAS  Google Scholar 

  26. Song J, Tian S, Yu L, Yang Q, Xing Y, Zhang C et al (2020) MD-MLI: prediction of miRNA–lncRNA interaction by using multiple features and hierarchical deep learning. IEEE/ACM Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.2020.3034922

    Article  PubMed  Google Scholar 

  27. Liu B, Li K, Huang D, Chou KC (2018) iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics 34(22):3835–3842. https://doi.org/10.1093/bioinformatics/bty458

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Zhao Y, Liao X, Shi W, Li K, Zou Q et al (2019) Deep learning in omics: a survey and guideline. Brief Funct Genomics 18(1):41–57. https://doi.org/10.1093/bfgp/ely030

    Article  CAS  PubMed  Google Scholar 

  29. Peng C, Han S, Zhang H, Li Y (2019) RPITER: a hierarchical deep learning framework for ncRNA-protein interaction prediction. Int J Mol Sci 20:1070. https://doi.org/10.3390/ijms20051070

    Article  CAS  PubMed Central  Google Scholar 

  30. Negri TDC, Alves WAL, Bugatti PH, Saito PTM, Domingues DS, Paschoal AR (2019) Pattern recognition analysis on long non-coding RNAs: a tool for prediction in plants. Brief Bioinform 20(2):682–689. https://doi.org/10.1093/bib/bby034

    Article  PubMed  Google Scholar 

  31. Dong X, Yu Z, Cao W, Shi Y, Ma Q (2020) A survey on ensemble learning. Front Comput Sci 14(2):241–258. https://doi.org/10.1007/s11704-019-8208-z

    Article  Google Scholar 

  32. Ordozgoiti B, Mozo A, Lacalle JGLD (2019) Regularized greedy column subset selection. Inf Sci 486:393–418. https://doi.org/10.1016/j.ins.2019.02.039

    Article  Google Scholar 

  33. Dai Q, Guo M, Duan X, Teng Z, Fu Y (2019) Construction of complex features for computational predicting ncRNA-protein interaction. Front Genet 10:18. https://doi.org/10.3389/fgene.2019.00018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen Z, Deng S, Huang D (2020) RNA-protein binding sites prediction via multi scale convolutional gated recurrent unit networks. IEEE/ACM Trans Comput Biol Bioinform 17(5):1741–1750. https://doi.org/10.1109/TCBB.2019.2910513

    Article  CAS  Google Scholar 

  35. Liu J, Gong X (2019) Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction. BMC Bioinformatics 20:609. https://doi.org/10.1186/s12859-019-3199-1

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D115–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  Google Scholar 

  37. Gallart AP, Pulido AH, Lagrán IAMD, Sanseverino W, Cigliano RA (2016) GREENC: a wiki-based database of plant lncRNAs. Nucleic Acids Res 44:D1161–D1166. https://doi.org/10.1093/nar/gkv1215

    Article  CAS  Google Scholar 

  38. Liu Y, Ke L, Wu G, Xu Y, Wu X, Xia R et al (2017) miR3954 is a trigger of phasiRNAs that affects flowering time in citrus. Plant J 92:263–275. https://doi.org/10.1111/tpj.13650

    Article  CAS  PubMed  Google Scholar 

  39. Wang J, Yu W, Yang Y, Li X, Chen T, Liu T et al (2015) Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection. Sci Rep 5:16946. https://doi.org/10.1038/srep16946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Jia C, Fullwood MJ, Kwoh CK (2020) DeepCPP: a deep neural network based on nucleotide bias information and minimum distribution similarity feature selection for RNA coding potential prediction. Brief Bioinform 22(2):2073–2084. https://doi.org/10.1093/bib/bbaa039

    Article  CAS  Google Scholar 

  41. Lorenz R, Bernhart SH, Siederdissen CHZ, Tafer H, Flamm C, Stadler PF et al. (2011) ViennaRNA package 2.0. Algorithm Mol Biol 6:26. http://www.almob.org/content/6/1/26.

  42. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:28. https://doi.org/10.1038/nature14539

    Article  CAS  Google Scholar 

  43. Vidal A, Kristjanpoller W (2020) Gold volatility prediction using a CNN-LSTM approach. Expert Syst Appl 157:113481. https://doi.org/10.1016/j.eswa.2020.113481

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 61872055, 32072592, and 31872116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Meng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Q., Meng, J., Shi, W. et al. Ensemble Deep Learning Based on Multi-level Information Enhancement and Greedy Fuzzy Decision for Plant miRNA–lncRNA Interaction Prediction. Interdiscip Sci Comput Life Sci 13, 603–614 (2021). https://doi.org/10.1007/s12539-021-00434-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00434-7

Keywords

Navigation