Skip to main content
Log in

Modern Trophic State of the Benthic Zone in the Ivankovo and Uglich Reservoirs According to the Content of Sedimentary Pigments

  • PHYTOPLANKTON, PHYTOBENTHOS, PHYTOPERYPHYTON
  • Published:
Inland Water Biology Aims and scope Submit manuscript

Abstract

New data on the content of chlorophyll a with pheopigments (Chl + Ph) in bottom sediments (BSs) of the Ivankovo and Uglich reservoirs of the Upper Volga (Russia) obtained in 2019 are given. The relationships between pigment concentrations and characteristics of bottom sediments and depth are analyzed. It is established that at present the average concentration of Chl + Ph is 156 μg/g dry weight in the Ivankovo and 105 μg/g dry weight in the Uglich reservoirs, which exceeds the values obtained 20 years ago (126 and 79 μg/g dry weight, respectively). An increase in the concentration of sedimentary pigments was recorded mainly in the zones of silt accumulation. The weighted average content of sedimentary pigments calculated based on the areas of different sediments makes it possible to estimate the trophic state of the benthic zone in the Ivankovo Reservoir (125 μg/g dry weight) as the initial stage of hypertrophy and in the Uglich Reservoir (52.8 μg/g dry weight) as the final stage of mesotrophy. The trophic state of the benthic zone in both water bodies corresponds to the eutrophic status of the pelagic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Alimov, A.F. and Golubkov, M.S., Lake eutrophication and community structure, Inl. Water Biol., 2014, vol. 7, no. 3, p. 185. https://doi.org/10.1134/S1995082914030031

    Article  Google Scholar 

  2. Boulion, V.V., A system for assessing and forecasting the bioproductivity of lacustrine-type ecosystems, Water Resour., 2020, vol. 47, no. 3, p. 459. https://doi.org/10.1134/S0097807820030021

    Article  CAS  Google Scholar 

  3. Datsenko, Yu.S., Evtrofirovanie vodokhranilishch. Gidrologo-gidrokhimicheskie aspekty (Eutrophication of Reservoirs: Hydrological and Hydrochemical Aspects), Moscow: GEOS, 2007.

  4. Devyatkin, V.G., Influence of heated waters on phytoplankton of the Ivankovo Reservoir, in Ekologiya organizmov vodokhranilishch-okhladitelei (Ecology of Organisms Inhabiting Cooling Reservoirs), Leningrad: Nauka, 1975, p. 143.

  5. Devyatkin, V.G., Meteleva, N.Yu., and Mitropol’skaya, I.V., Hydrophysical factors of productivity of littoral phytoplankton: the influence of hydrophysical factors on the dynamics of photosynthesis of phytoplankton, Biol. Vnutr. Vod, 2000, no. 1, p. 45.

  6. Edelstein, K.K., Hydrology peculiarities of valley reservoirs, Int. Rev. Gesamten Hydrobiol., 1995, vol. 80, no. 1, p. 27. https://doi.org/10.1002/iroh.19950800105

    Article  Google Scholar 

  7. Ekologicheskie problemy Verkhnei Volgi (Environmental Problems of the Upper Volga), Yaroslavl: Yaroslav. Gos. Tekhn. Univ., 2001.

  8. Grigor’eva I.L., Lantsova I.V., Tulyakova G.V., Geoekologiya Ivan’kovskogo vodokhranilishcha i ego vodosbora (Geoecology of the Ivankovo Reservoir and Its Catchment Area), Konakovo: Izdat. dom Bulat, 2000.

  9. Ivan’kovskoe vodokhranilishche i ego zhizn' (Ivankovo Reservoir and Its Life), Leningrad: Nauka, 1978.

  10. Jeppesen, E., Brucet, S., Naselli-Flores, L., et al., Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity, Hydrobiologia, 2015, vol. 750, no. 1, p. 201. https://doi.org/10.1007/s10750-014-2169-x

    Article  Google Scholar 

  11. Jiménez, L., Romero-Viana, L., Conde-Porcuna, J.M., and Pérez-Martínez, C., Sedimentary photosynthetic pigments as indicators of climate and watershed perturbations in an alpine lake in southern Spain, Limnetica, 2015, vol. 34, no. 2, p. 439. https://doi.org/10.23818/limn.34.33

    Article  Google Scholar 

  12. Kopylov, A.I., Lazareva, V.I., Mineeva, N.M., and Zabotkina, E.A., Planktonic community of a large eutrophic reservoir during a period of anomalously high water temperature, Inl. Water Biol., 2020, vol. 13, no. 3, p. 339. https://doi.org/10.1134/S1995082920030086

    Article  Google Scholar 

  13. Lazareva, V.I. and Sokolova, E.A., Dynamics and phenology of zooplankton in a large lowland reservoir: response to climate change, Usp. Sovrem. Biol., 2013, vol. 133, no. 6, p. 564.

    Google Scholar 

  14. Leavitt, P.R., A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance, J. Paleolimnol., 1993, no. 9, p. 109. https://doi.org/10.1007/BF00677513

  15. Litvinov, A.S., Pyrina, I.L., and Zakonnova, A.V., Thermal regime and productivity of phytoplankton of the Rybinsk Reservoir under the conditions of climate change, Voda: Khim. Ekol., 2014, no. 12, p. 108.

  16. Lorenzen, C.J., Determination of chlorophyll and pheopigments: spectrophotometric equations, Limnol. Oceanogr., 1967, vol. 12, no. 2, p. 343. https://doi.org/10.4319/lo.1967.12.2.0343

    Article  CAS  Google Scholar 

  17. Martynova, M.V., Donnye otlozheniya kak sostavlyayushchaya limnicheskikh ekosistem (Bottom Sediments as a Component of Limnic Ecosystems), Moscow: Nauka, 2010.

  18. Mineeva, N.M., Content of photosynthetic pigments in the Upper Volga reservoirs (2005–2016), Inl. Water Biol., 2019, vol. 12, no. 2, p. 161. https://doi.org/10.1134/S199508291902010X

    Article  Google Scholar 

  19. Möller, W.A.A. and Scharf, B.W., The content of chlorophyll in the sediment of the volcahic maar lakes in the Eifel region (Germany) as an indicator for eutrophication, Hydrobiologia, 1986, vol. 143, no. 1, p. 327. https://doi.org/10.1007/BF00026678

    Article  Google Scholar 

  20. Poddubnyi, S.A., Papchenkov, V.G., Chemeris, E.V., and Bobrov, A.A., Overgrowing of protected shallow waters in the upper Volga Reservoirs in relation to their morphometry, Inl. Water Biol., 2017, vol. 10, no. 1, p. 64. https://doi.org/10.1134/S199508291701014X

    Article  Google Scholar 

  21. Pyrina, I.L., Primary production of phytoplankton in the Ivankovo, Rybinsk, and Kuibyshev reservoirs depending on some factors, in Produtsirovanie i krugovorot organicheskogo veshchestva vo vnutrennikh vodoemakh (Production and Circulation of Organic Matter in Inland Water Bodies), Moscow: AN SSSR, 1966, p. 249.

  22. Pyrina, I.L. and Lyashenko, G.F., Long-term dynamics of the productivity of phytoplankton and higher aquatic vegetation and their role in the production of organic matter in the overgrown Ivankovo reservoir, Biol. Vnutr. Vod, 2005, no. 3, p. 48.

  23. Pyrina, I.L., Devyatkin, V.G., and Elizarova, V.A., Experimental study of the effect of heating on the development and photosynthesis of phytoplankton, in Antropogennye faktory v zhizni vodoemov (Anthropogenic Factors in the Life of Water Bodies), Tr. Inst. Biol. Vnutr. Vod Akad. Nauk SSSR, Leningrad: Nauka, 1975, no. 30 (33), p. 67.

  24. Pyrina, I.L., Litvinov, A.S., Kuchai, L.A., et al., Long-term changes in the primary production of phytoplankton of the Rybinsk Reservoir in connection with the influence of climatic factors, in Sostoyanie i problemy produktsionnoi gidrobiologii (State and Problems of Production Hydrobiology), Moscow: KMK, 2006, p. 38.

  25. Reuss, N., Leavitt, P.R., Hall, R.I., et al., Development and application of sedimentary pigments for assessing effects of climatic and environmental changes on subarctic lakes in northern Sweden, J. Paleolimnol., 2010, vol. 43, no. 1, p. 149. https://doi.org/10.1007/s10933-009-9323-x

    Article  Google Scholar 

  26. Sigareva, L.E., Khlorofill v donnykh otlozheniyakh volzhskikh vodoemov (Chlorophyll in Bottom Sediments of the Volga Reservoirs), Moscow: KMK, 2012.

  27. Sigareva, L.E. and Timofeeva, N.A., Plant pigments in bottom sediments as indicators of the trophic state of the Upper Volga reservoirs, Probl. Reg. Ekol., 2001, no. 2, p. 23.

  28. Sigareva, L.E., Perova, S.N., and Timofeeva, N.A., Long-term dynamics of the macrozoobenthos and plant pigments in bottom sediments of Rybinsk Reservoir, Biol. Bull. (Moscow), 2020, vol. 47, no. 1, p. 80. https://doi.org/10.1134/S1062359020010136

    Article  CAS  Google Scholar 

  29. Szymczak-Żyła, M. and Kowalewska, G., Chloropigments a in sediments of the Gulf of Gdansk deposited during the last 4000 years as indicators of eutrophication and climate change, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2009, vol. 284, nos. 3–4, p. 283. https://doi.org/10.1016/j.palaeo.2009.10.007

    Article  Google Scholar 

  30. Szymczak-Żyła, M., Kowalewska, G., and Louda, J.W., Chlorophyll-a and derivatives in recent sediments as indicators of productivity and depositional conditions, Mar. Chem.–2011, vol. 125, nos. 1–4, p. 39. https://doi.org/10.1016/j.marchem.2011.02.002

    Article  CAS  Google Scholar 

  31. Tse, T.J., Doig, L.E., Leavitt, P.R., et al., Long-term spatial trends in sedimentary algal pigments in a narrow river-valley reservoir, Lake Diefenbaker, Canada, J. Great Lakes Res., 2015, vol. 41, suppl. 2, p. 56. https://doi.org/10.1016/j.jglr.2015.08.002

    Article  CAS  Google Scholar 

  32. Vinberg, G.G., Pervichnaya produktsiya vodoemov (Primary Production of Reservoirs), Minsk: AN BSSR, 1960.

  33. Zakonnov, V.V., Gierszewski, P., Zakonnova, A.V., and Kaszubski, M., Spatio-temporal transformation of the soil complex of the Volga reservoirs. Communication 3. Assessment of changes in morphometric characteristics as a result of the accumulation of bottom sediments in the Uglich Reservoir, Vodn. Khoz. Rossii: Probl., Tekhnol., Upravl., 2016, no. 6, p. 61.

  34. Zakonnov, V.V., Grigor’eva, I.L., and Zakonnova, A.V., Spatio-temporal transformation of the soil complex of the Volga reservoirs. Communication 5. Bottom sediments and water quality of the Ivankovo Reservoir, Vodn. Khoz. Rossii: Probl., Tekhnol., Upravl., 2018, no. 3, p. 35.

  35. Zakonnova, A.V. and Litvinov, A.S., Long-term changes in the hydroclimatic regime of the Rybinsk Reservoir, Tr. Inst. Biol. Vnutr. Vod im. I.D. Papanina Ross. Akad. Nauk, 2016, no. 75 (78), p. 16.

Download references

Funding

This study was performed as part of State Task project no. АААА-А18-118012690096-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Sigareva.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Ruban

Abbreviations: BSs, bottom sediments; dw, dry weight; Т, temperature; Ph, pheopigments; Chl а, chlorophyll а; Chl + Ph, in total, chlorophyll а with pheopigments; Cv, coefficient of variation; E, optical density of acetone extract of pigments; R2, coefficient of determination; Z, transparency.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigareva, L.E., Timofeeva, N.A. & Lozhkina, R.A. Modern Trophic State of the Benthic Zone in the Ivankovo and Uglich Reservoirs According to the Content of Sedimentary Pigments. Inland Water Biol 14, 168–176 (2021). https://doi.org/10.1134/S1995082921020139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995082921020139

Keywords:

Navigation