Skip to main content
Log in

Understanding Two Slopes in the \(pp(p\bar {p})\) Differential Cross Sections

  • FIELDS, PARTICLES, AND NUCLEI
  • Published:
JETP Letters Aims and scope Submit manuscript

Recent experiments have discovered two exponents in the \(pp\) elastic differential cross sections with two d-ifferent slope parameters, of the order 16–20 GeV–2 and 4–4.8 GeV–2 in the regions –t ≲ 0.5 GeV2 and ‒t ≳ 1 GeV2, respectively. We suggest a simple model of the \(pp\) elastic scattering with two types of particle exchanges: (i) when the exchanged particle transfers the momentum Q from a quark of the proton \({{p}_{1}}\) to one quark in another proton \({{p}_{2}}\), producing the slope \({{B}_{1}}\); (ii) when the transfer occurs from two quarks in the \({{p}_{1}}\) to two quarks in the \({{p}_{2}}\), giving the exponent with the slope \({{B}_{2}}\). The resulting amplitude is proportional to the product of the form factors of two protons, depending on Q, but with different coefficients in the cases (i) and (ii). Using the only parameter of the proton charge radius \(r_{{{\text{ch}}}}^{{\text{2}}} = 0.93\) fm2, one obtains \({{B}_{1}} = 16\) GeV–2, \({{B}_{2}} = \) 4 GeV–2 with the strict value of the ratio, \(\frac{{{{B}_{1}}}}{{{{B}_{2}}}} = 4.0\), independent of rch. These predictions are surprisingly close to the data both in the pp and in the \(\bar {p}p\) differential cross sections. Comparison to experimental data and theoretical approaches is discussed, together with possible implications for the future development of the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. G. Antchev, P. Aspell, I. Atanassov, et al. (TOTEM Collab.), Eur. Phys. J. C 80, 91 (2020); arXiv: 1812.08610.

  2. G. Antchev, P. Aspell, I. Atanassov, et al. (TOTEM Collab.), Europhys. Lett. 101, 21003 (2013).

    Article  ADS  Google Scholar 

  3. G. Antchev, P. Aspell, I. Atanassov, et al. (TOTEM Collab.), Nucl. Phys. B 899, 527 (2015).

    Article  ADS  Google Scholar 

  4. G. Antchev, P. Aspell, I. Atanassov, et al. (TOTEM Collab.), Eur. Phys. J. C 79, 861 (2019); arXiv: 1812.08283.

  5. F. Abe, M. G. Albrow, D. E. Amidei, et al. (CDF Collab.), Phys. Rev. D 50, 5518 (1994).

    Article  ADS  Google Scholar 

  6. N. A. Amos, C. Avila, W. F. Baker, et al. (E710 Collab.), Phys. Lett. B 247, 127 (1990).

    Article  ADS  Google Scholar 

  7. V. M. Abazov, B. Abbot, B. S. Acharya, et al. (D0 Collab.), Phys. Rev. D 86, 012009 (2012).

    Article  ADS  Google Scholar 

  8. I. M. Dremin, Phys. Usp. 60, 333 (2017).

    Article  ADS  Google Scholar 

  9. A. B. Kaidalov, Phys. Rep. 50, 157 (1979).

    Article  ADS  Google Scholar 

  10. V. P. Concalves and P. V. R. G. Silva, Eur. Phys. J. 79, 237 (2019).

    Article  ADS  Google Scholar 

  11. A. P. Samokhin and V. A. Petrov, Nucl. Phys. A 974, 45 (2018).

    Article  ADS  Google Scholar 

  12. A. P. Samokhin, Nucl. Phys. A 1006, 122110 (2021); arXiv: 2007.08155.

  13. W. Czyz and L. Maximon, Ann. Phys. 52, 59 (1969).

    Article  ADS  Google Scholar 

  14. A. Bialas and A. Bzdak, Acta Phys. Polon. B 38, 159 (2007).

    ADS  Google Scholar 

  15. M. M. Islam, Nucl. Phys. B 104, 511 (1976).

    Article  ADS  Google Scholar 

  16. M. M. Islam, J. Kaspar, and R. J. Luddy, Mod. Phys. Lett. A 24, 485 (2009).

    Article  ADS  Google Scholar 

  17. T. Csorgo, R. Pasechnik, and A. Ster, Eur. Phys. J. C 79, 62 (2019);

    Article  ADS  Google Scholar 

  18. Eur. Phys. J. C 80, 126 (2020).

  19. T. Csorgo and T. Szanyi, arXiv: 2005.14319.

  20. I. M. Dremin, Phys. Usp. 61, 381 (2018).

    Article  ADS  Google Scholar 

  21. I. M. Dremin, Eur. Phys. J. C 80, 172 (2020); arXiv: 1912.12841.

  22. S. M. Troshin and N. E. Tyurin, Europhys. Lett. 129, 31002 (2020).

    Article  ADS  Google Scholar 

  23. Yu. A. Simonov, Sov. J. Nucl. Phys. 3, 461 (1966).

    Google Scholar 

  24. A. M. Badalian and Yu. A. Simonov, Sov. J. Nucl. Phys. 3, 755 (1966).

    Google Scholar 

  25. Yu. A. Simonov, Phys. At. Nucl. 66, 338 (2003).

    Article  Google Scholar 

  26. B. O. Kerbikov and Yu. A. Simonov, Phys. Rev. D 62, 093016 (2000).

    Article  ADS  Google Scholar 

  27. Yu. A. Simonov, arXiv: 2010.12666.

  28. H. Fleurbaey, S. Galtier, S. Thomas, et al., Phys. Rev. Lett. 120, 183001 (2018); arXiv: 1801.08816 [hep-ex].

  29. V. A. Khoze, A. D. Martin, and M. G. Ryskin, Phys. Rev. D 97, 034019 (2018).

    Article  ADS  Google Scholar 

  30. V. A. Khoze, A. D. Martin, and M. G. Ryskin, Eur. Phys. J. C 74, 2756 (2014); arXiv: 1312.3851 [hep-ph].

    Article  ADS  Google Scholar 

  31. A. B. Kaidalov and Yu. A. Simonov, Phys. Lett. B 477, 163 (2000); arXiv: hep-ph/9912434.

    Article  ADS  Google Scholar 

  32. A. B. Kaidalov and Yu. A. Simonov, Phys. At. Nucl. 63, 1428 (2000); hep-ph/9911291.

    Article  Google Scholar 

  33. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

    Google Scholar 

  34. B. L. Ioffe, V. S. Fadin, and L. N. Lipatov, Quantum Chromodynamics: Perturbative and Nonperturbative Aspects, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  35. A. Donnachie, H. G. Dosch, P. V. Landshoff, and O. Nachtmann, Pomeron Physics and QCD, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge Univ. Press, Cambridge, 2002).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.M. Badalian for useful discussions.

Funding

This work was supported by the Russian Science Foundation, project no. 16-12-10414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Simonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, Y.A. Understanding Two Slopes in the \(pp(p\bar {p})\) Differential Cross Sections. Jetp Lett. 113, 568–571 (2021). https://doi.org/10.1134/S0021364021090046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021090046

Navigation