Skip to main content
Log in

Antiviral Activity of Nanocomplexes of Antisense Oligonucleotides Targeting VP72 Protein in Vero Cells Infected by African Swine Fever Virus

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Antiviral activity of antisense oligodeoxyribonucleotides with phosphorothioate or mesyl phosphoramidate internucleotidic groups targeting the main capsid protein VP72 mRNA of the African swine fever virus (ASFV), either in a free form with Lipofectamine 3000 transfection or in the form of ionic complexes with amino-modified mesoporous silicon dioxide nanoparticles, has been evaluated in Vero cells infected with ASFV. Relatively high cytotoxicity of oligonucleotide nanocomplexes for Vero cells at concentrations above 500 nM was detected. Two sequences of antisense oligonucleotides were identified, which reduced the virus titer by an order of magnitude at 500 nM. The antiviral effect of nanocomplexes exceeded that of free oligonucleotides in the presence of Lipofectamine 3000, which indicates a more efficient delivery of nanocomplexes to the cells. Antisense oligonucleotides able to reduce the replication of ASFV were hitherto unknown from the literature. The obtained data can be used as a starting point for further research on the development of oligonucleotide-based antiviral drugs against the African swine fever virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Costard, S., Mur, L., Lubroth, J., Sanchez-Vizcaino, J.M., and Pfeiffer, D.U., Virus Res., 2013, vol. 173, pp. 191–197. https://doi.org/10.1016/j.virusres.2012.10.030

    Article  CAS  PubMed  Google Scholar 

  2. Penrith, M.-L., Vosloo, W., Jori, F., and Bastos, A.D., Virus Res., 2013, vol. 173, pp. 228–246. https://doi.org/10.1016/j.virusres.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  3. Sánchez-Vizcaíno, J.M., Mur, L., and Martínez-López, B., Vet. Microbiol., 2013, vol. 165, pp. 45–50. https://doi.org/10.1016/j.vetmic.2012.11.030

    Article  PubMed  Google Scholar 

  4. Cisek, A.A., Dąbrowska, I., Gregorczyk, K.P., and Wyżewski, Z., Ann. Parasitol., 2016, vol. 62, pp. 161–167. https://doi.org/10.17420/ap6203.49

    Article  PubMed  Google Scholar 

  5. Gogin, A., Gerasimov, V., Malogolovkin, A., and Kolbasov, D., Virus Res., 2013, vol. 173, pp. 198–203. https://doi.org/10.1016/j.virusres.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  6. Oganesyan, A.S., Petrova, O.N., Korennoy, F.I., Bardina, N.S., Gogin, A.E., and Dudnikov, S.A., Virus Res., 2013, vol. 173, pp. 204–211. https://doi.org/10.1016/j.virusres.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  7. Gallardo, M.C., Reoyo, A.T., Fernández-Pinero, J., Iglesias, I., Muñoz, M.J., and Arias, M.L., Porcine Health Manage., 2015, vol. 1, p. 21. https://doi.org/10.1186/s40813-015-0013-y

    Article  Google Scholar 

  8. Zakaryan, H. and Revilla, Y., Vet. Microbiol., 2016, vol. 185, pp. 15–19. https://doi.org/10.1016/j.vetmic.2016.01.016

    Article  PubMed  Google Scholar 

  9. Stephenson, M.L. and Zamecnik, P.C., Proc. Natl. Acad. Sci. U. S. A., 1978, vol. 75, pp. 285–288. https://doi.org/10.1073/pnas.75.1.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uhlmann, E. and Peyman, A., Chem. Rev., 1990, vol. 90, pp. 543–584. https://doi.org/10.1021/cr00102a001

    Article  CAS  Google Scholar 

  11. De Mesmaeker, A., Haener, R., Martin, P., and Moser, H.E., Acc. Chem. Res., 1995, vol. 28, pp. 366–374. https://doi.org/10.1021/ar00057a002

    Article  CAS  Google Scholar 

  12. Goodchild, J., Methods Mol. Biol., 2011, vol. 764, pp. 1–15. https://doi.org/10.1007/978-1-61779-188-8_1

    Article  CAS  PubMed  Google Scholar 

  13. Perry, C.M. and Balfour, J.A., Drugs, 1999, vol. 57, pp. 375–380. https://doi.org/10.2165/00003495-199957030-00010

    Article  CAS  PubMed  Google Scholar 

  14. Juliano, R.L., Ming, X., and Nakagawa, O., Bioconjug. Chem., 2012, vol. 23, pp. 147–157. https://doi.org/10.1021/bc200377d

    Article  CAS  PubMed  Google Scholar 

  15. Parveen, S., Misra, R., and Sahoo, S.K., Nanomedicine, 2012, vol. 8, pp. 147–166. https://doi.org/10.1016/j.nano.2011.05.016

    Article  CAS  PubMed  Google Scholar 

  16. Design, Synthesis, Multifunctionalization and Biomedical Applications of Multifunctional Mesoporous Silica-Based Drug Delivery Nanosystems, Chen, Y., Ed., Springer, 2016.

    Google Scholar 

  17. Ryabchikova, E.I., Chelobanov, B.P., Parkhomenko, R.G., Korchagina, K.V., and Basova, T.V., Micropor. Mesopor. Mater., 2017, vol. 248, pp. 46–53. https://doi.org/10.1016/j.micromeso.2017.04.006

    Article  CAS  Google Scholar 

  18. Miroshnichenko, S.K., Patutina, O.A., Burakova, E.A., Chelobanov, B.P., Fokina, A.A., Vlassov, V.V., Altman, S., Zenkova, M.A., and Stetsenko, D.A., Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, pp. 1229–1234. https://doi.org/10.1073/pnas.1813376116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crooke, S.T., Nucleic Acid Ther., 2017, vol. 27, pp. 70–77. https://doi.org/10.1089/nat.2016.0656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wagner, A., Bock, C.T., Fechner, H., and Kurreck, J., Future Med. Chem., 2015, vol. 7, pp. 1637–1642. https://doi.org/10.4155/fmc.15.114

    Article  CAS  PubMed  Google Scholar 

  21. Warren, T.K., Shurtleff, A.C., and Bavari, S., Antiviral Res., 2012, vol. 94, pp. 80–88. https://doi.org/10.1016/j.antiviral.2012.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keita, D., Heath, L., and Albina, E., Antiviral Ther., 2010, vol. 15, pp. 727–736. https://doi.org/10.3851/IMP1593

    Article  CAS  Google Scholar 

  23. Vasilyeva, S.V., Grin, I.R., Chelobanov, B.P., and Stetsenko, D.A., Bioorg. Med. Chem. Lett., 2018, vol. 28, pp. 1248–1251. https://doi.org/10.1016/j.bmcl.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  24. Vasilyeva, S.V., Petrova, A.S., Shtil, A.A., and Stetsenko, D.A., J. Saudi Chem. Soc., 2020, vol. 24, pp. 98–104. https://doi.org/10.1016/j.jscs.2019.09.007

    Article  CAS  Google Scholar 

  25. Vallet-Regi, M., Rámila, A., del Real, R.P., and Pérez-Pariente, J., Chem. Mater., 2001, vol. 13, pp. 308–311. https://doi.org/10.1021/cm0011559

    Article  CAS  Google Scholar 

  26. Castillo, R.R., Colilla, M., and Vallet-Regi, M., Expert. Opin. Drug Delivery, 2017, vol. 14, pp. 229–243. https://doi.org/10.1080/17425247.2016.1211637

    Article  CAS  Google Scholar 

  27. Song, Y., Li, Y., Xu, Q., and Liu, Z., Int. J. Nanomed., 2017, vol. 12, pp. 87–110. https://doi.org/10.2147/IJN.S117495

    Article  CAS  Google Scholar 

  28. Moreira, A.F., Dias, D.R., and Correia, I.J., Micropor. Mesopor. Mater., 2016, vol. 236, pp. 141–157. https://doi.org/10.1016/j.micromeso.2016.08.038

    Article  CAS  Google Scholar 

  29. Xiao, X., Liu, Y., Guo, M., Fei, W., Zheng, H., Zhang, R., Zhang, Y., Wei, Y., Zheng, G., and Li, F., J. Biomater. Appl., 2016, vol. 31, pp. 23–35. https://doi.org/10.1177/0885328216637211

    Article  CAS  PubMed  Google Scholar 

  30. Guo, Y., Sun, J., Bai, S., and Jin, X., J. Biomater. Appl., 2016, vol. 31, pp. 411–420. https://doi.org/10.1177/0885328216653287

  31. Manzano, M., Ainaa, V., Areán, C.O., Balasa, F., Cauda, V., Colilla, M., Delgado, M.R., and Vallet-Regí, M., Chem. Eng. J., 2008, vol. 137, pp. 30–37. https://doi.org/10.1016/j.cej.2007.07.078

    Article  CAS  Google Scholar 

  32. Wang, J.G., Li, F., Zhou, H.J., Sun, P.C., Ding, D.T., and Chen, T.H., Chem. Mater., 2009, vol. 21, pp. 612–620. https://doi.org/10.1021/cm803124a

    Article  CAS  Google Scholar 

  33. Gao, C., Zheng, H., Xing, L., Shu, M., and Che, S., Chem. Mater., 2010, vol. 22, pp. 5437–5444. https://doi.org/10.1021/cm100667u

    Article  CAS  Google Scholar 

  34. Cauda, V., Argyo, C., Schlossbauer, A., and Bein, T., J. Mater. Chem., 2010, vol. 20, pp. 4305–4311. https://doi.org/10.1039/B918590A

    Article  CAS  Google Scholar 

  35. Szegedi, A., Popova, M., Goshev, I., and Mihály, J., J. Solid State Chem., 2011, vol. 184, pp. 1201–1207. https://doi.org/10.1016/j.jssc.2011.03.005

    Article  CAS  Google Scholar 

  36. Szegedi, A., Popova, M., Goshev, I., Klébert, S., and Mihály, J., J. Solid State Chem., 2012, vol. 194, pp. 257–263. https://doi.org/10.1016/j.jssc.2012.05.030

    Article  CAS  Google Scholar 

  37. Bahrami, Z., Badiei, A., and Atyabi, F., Chem. Eng. Res. Des., 2014, vol. 92, pp. 1296–1303. https://doi.org/10.1016/j.cherd.2013.11.007

    Article  CAS  Google Scholar 

  38. Rehman, F., Ahmed, K., Airoldi, C., Gaisford, S., Buanz, A., Rahim, A., Muhammad, N., and Volpe, P.L.O., Mater. Sci. Eng., vol. 72, pp. 34–41. https://doi.org/10.1016/j.msec.2016.11.040

  39. He, Y., Luo, L., Liang, S., Long, M., and Xu, H., J. Biomater. Appl., 2017, vol. 32, pp. 524–532. https://doi.org/10.1177/0885328217724638

    Article  CAS  PubMed  Google Scholar 

  40. Xu, P., Wang, H., Tong, R., Du, Q., and Zhong, W., Colloid Polym. Sci., 2006, vol. 284, pp. 755–762. https://doi.org/10.1007/s00396-005-1428-9

    Article  CAS  Google Scholar 

  41. Eckstein, F., Antisense Nucleic Acid Drug Dev., 2009, vol. 10, pp. 117–121. https://doi.org/10.1089/oli.1.2000.10.117

    Article  Google Scholar 

  42. Chelobanov, B.P., Burakova, E.A., Prokhorova, D.V., Fokina, A.A., and Stetsenko, D.A., Russ. J. Bioorg. Chem., 2017, vol. 43, pp. 664–668. https://doi.org/10.1134/S1068162017060024

    Article  CAS  Google Scholar 

  43. Matano, Y., Ohkubo, H., Honsho, Y., Saito, A., Seki, S., and Imahori, H., Org. Lett., 2013, vol. 15, pp. 932–935. https://doi.org/10.1021/ol4000982

    Article  CAS  PubMed  Google Scholar 

  44. Nikolaev, V.A., Chiba, J., Tomohiro, T., and Hatanaka, Y., Encycl. Reagents Org. Synth., 2015. https://doi.org/10.1002/047084289X.rm069.pub2

    Book  Google Scholar 

  45. Stöber, W., Fink, A., and Bohn, E., J. Colloid Interface Sci., 1968, vol. 26, pp. 62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  46. Atherton, E., Sheppard, R.C., and Ward, P., J. Chem. Soc. Perkin Trans., 1985, vol. 10, pp. 2065–2073. https://doi.org/10.1039/P19850002065

    Article  Google Scholar 

  47. Prokhorova, D.V., Chelobanov, B.P., Burakova, E.A., Fokina, A.A., and Stetsenko, D.A., Russ. J. Bioorg. Chem., 2017, vol. 43, pp. 38–42. https://doi.org/10.1134/S1068162017010071

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors thank Dr. Е.А. Zelentsova (The Centre for Collective Use for Mass Spectroscopy Studies of the International Tomographic Centre, Siberian Branch of the Russian Academy of Sciences) for MALDI-TOF spectra of oligonucleotides.

Funding

The work was funded by Russian Foundation for Basic Research (grant no. 18-515-05007), and the Ministry of High Education and Science of the Russian Federation (project of Novosibirsk State University FSUS-2020-0035).

Author information

Authors and Affiliations

Authors

Contributions

А.V. Akobyan and Е.А. Burakova contributed equally to the work.

Corresponding author

Correspondence to D. A. Stetsenko.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This work contains no description of studies carried out by any of the authors that involve humans or animals.

Conflict of Interests

Authors declare no conflict of interests.

Additional information

Abbreviations: APTES, 3-aminopropyltriethoxysilane; СТАВ, cetyltrimethylammonium bromide; DMTr, 4,4'-dimethoxytrityl; MALDI-TOF, matrix assisted laser desorption ionization time of flight mass spectrometry; TCID50, median tissue culture infection dose; TEAA, triethylammonium acetate; АSF, African swine fever. All oligonucleotide sequences are 5'–3'; prefix d in oligodeoxyribonucleotides is omitted.

Corresponding author: phopne: +7 (383) 363-49-63.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakobyan, A.V., Burakova, E.A., Arabyan, E.A. et al. Antiviral Activity of Nanocomplexes of Antisense Oligonucleotides Targeting VP72 Protein in Vero Cells Infected by African Swine Fever Virus. Russ J Bioorg Chem 47, 411–419 (2021). https://doi.org/10.1134/S1068162021020035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021020035

Keywords:

Navigation