Skip to main content
Log in

Design and Synthesis of 11H-Xantheno[2,1-c][1,2,5]Selenadiazol-11-One Derivatives as Potent Antimicrobial and Antitubercular Agents

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

A series of 11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one derivatives (Va–m) that incorporate a variety of substituents have been synthesized under both conventional heating and microwave irradiation procedures. All these analogs were evaluated for their antimicrobial activity against the Gram-positive bacteria Bacillus subtilis (BS), Staphylococcus aureus (SA), and Staphylococcus epidermidis (SE), against the Gram-negative bacteria Escherichia coli (EC), Pseudomonas aeruginosa (PA), and Klebsiella pneumonia (KP), and against the fungal species Candida albicans (CA), Candida rugosa (CR), Rhizopus oryzae (RO), and Aspergillus niger (AN) and antitubercular activity against MTB H37Rv. Analog, 7,9-dimethoxy-11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one (Vc) was identified as a potent antibacterial agent (MIC[BS] = 2.5 µg/mL, MIC[SA] = 10 µg/mL, MIC[SE] = 2.5 µg/mL, MIC[EC] = 5 µg/mL, MIC[PA] = 10 µg/mL, MIC[KP] = 2.5 µg/mL), and a potent antifungal agent (MIC[CA] = 15 µg/mL, MIC[CR] = 15 µg/mL, MIC[RO] = 10 µg/mL). Another analog, 7,9-dimethyl-11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one (Vj) was also identified as a potent antibacterial agent (MIC[BS] = 2.5 µg/mL, MIC[SA] = 15 µg/mL, MIC[SE] = 2.5 µg/mL, MIC[EC] = 10 µg/mL, MIC[PA] = 15 µg/mL, MIC[KP] = 20 µg/mL), and a potent antifungal agent (MIC[CA] = 2.5 g/mL, MIC[CR] = 10 µg/mL MIC[RO] = 15 µg/mL and MIC[AN] = 10 µg/mL). Based on the MIC data analogs, 7,9-dimethoxy-11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one (Vc) and 7,9-dimethyl-11H-xantheno[2,1-c][1,2,5]selena-diazol-11-one (Vj) were identified as the most potent antimicrobial agents in the series. All these 11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one derivatives (Va–m) were also evaluated for their antitubercular activity against MTB H37Rv. Analogs, 7,9-dimethoxy-11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one (Vc) and 7,9-dimethyl-11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one (Vj) showed MIC of 3.12 µg/mL. These results suggest that analogs, 7,9-dimethoxy-11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one (Vc) and 7,9-dimethyl-11H-xantheno[2,1-c][1,2,5]selenadiazol-11-one (Vj) may be a potential multifunctional ligands for the development of highly effective antimicrobial and antitubercular activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Luo, C.T., Mao, S.S., Liu, F.L., Yang, M.X., Chen, H., Kurihara, H., and Li, Y., Fitoterapia, 2013, vol. 91, pp. 140–147. https://doi.org/10.1016/j.fitote.2013.08.021

    Article  CAS  PubMed  Google Scholar 

  2. Jung, H., Su, B., Keller, W., Mehta, R., Kinghorn, A.J., Agric. Food Chem., 2006, vol. 54, pp. 2077–2082. https://doi.org/10.1021/jf052649z

    Article  CAS  Google Scholar 

  3. Joana, A., Carla, F., Madalena, P., and Maria E. Tiritan, Molecules, 2019, vol. 24, pp. 314–342. https://doi.org/10.3390/molecules24020314

    Article  CAS  Google Scholar 

  4. Ali, M., Latif, A., Zaman, K., Arfan, M., Maitland, D., Ahmad, H., and Ahmad, M., Fitoterapia, 2014, vol. 95, pp. 258–265. https://doi.org/10.1016/j.fitote.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  5. Chen, L., Yang, L., and Wang, C., Food Chem. Toxicol., 2008, vol. 46, pp. 688–693. https://doi.org/10.1016/j.fct.2007.09.096

    Article  CAS  PubMed  Google Scholar 

  6. Pfister, J.R., Ferraresi, R.W., Harrison, I.T., Rooks, W.H., Roszkowski, A.P., Horn, A.V., and Fried, H. J., J. Med. Chem., 1972, vol. 15, pp. 1032–1035. https://doi.org/10.1021/jm00280a010

    Article  CAS  PubMed  Google Scholar 

  7. Xu, Z., Huang, L., Chen, X.H., Zhu, X.F., Qian, X.J., Feng, G.K., Lan, W.J., and Li, H.J., Molecules, 2014, vol. 19, pp. 1820–1827. https://doi.org/10.3390/molecules19021820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reutrakul, V., Anantachoke, N., Pohmakotr, M., Jaipetch, T., Sophasan, S., Yoosook, C., Kasisit, J., Napaswat, C., Santisuk, T., and Tuchinda, P., Planta Med., 2007, vol. 73, pp. 33–40. https://doi.org/10.1055/s-2006-951748

    Article  CAS  PubMed  Google Scholar 

  9. Marona, H., Szkaradek, N., Karczewska, E., Trojanowska, D., Budak, A., Bober, P., Przepiorka, W., Cegla, M., and Szneler, E., Arch. Pharm. Chem. Life Sci., 2009, vol. 342, pp. 9–18. https://doi.org/10.1002/ardp.200800089

    Article  CAS  Google Scholar 

  10. Yasunaka, K., Abe, F., Nagayama, A., Okabe, H., Lozada-Perez, L., Lopez-Villafranco, E., Muniz, E.E., Aguilar, A., and Reyes-Chilpa, R.J., J. Ethnopharmacol., 2005, vol. 97, pp. 293–299. https://doi.org/10.1016/j.jep.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  11. Nguemeving, J., Azebaze, A., Kuete, V., Eric Carly, N., Beng, V., Meyer, M., Blond, A., Bodo, B., and Nkengfack, A., Phytochemistry, 2006, vol. 67, pp. 1341–1346. https://doi.org/10.1016/j.phytochem.2006.03.018

    Article  CAS  PubMed  Google Scholar 

  12. Fukai, T., Yonekawa, M., Hou, A.J., Nomura, T., Sun, H.D., and Uno, J., J. Nat. Prod., 2003, vol. 66, pp. 1118–1120. https://doi.org/10.1021/np030024u

    Article  CAS  PubMed  Google Scholar 

  13. Groweiss, A., Cardellina, J.H., and Boyd, M.R., J. Nat. Prod., 2000, vol. 63, pp. 1537–1539. https://doi.org/10.1021/np000175m

    Article  CAS  PubMed  Google Scholar 

  14. Freddy, A.B. and Ericsson, C.D., Molecules, 2015, vol. 20, pp. 13165–13204. https://dx.doi.org/10.3390%2Fmolecules200713165

    Article  Google Scholar 

  15. Mei Chung, Weng, J., Wang, J., Teng, C., and Lin, C.M., Planta Med., 2002, vol. 68, pp. 25–29. https://doi.org/10.1055/s-2002-19871

    Article  CAS  PubMed  Google Scholar 

  16. Omprakash, G., Bahar, A., and Marona, H., PLoS One, 2019, vol. 15, pp. 591–600. https://doi.org/10.1371/journal.pone.0220920

    Article  CAS  Google Scholar 

  17. Szkaradek, N., Rapacz, A., Pytka, K., Filipek, B., Zelaszczyk, D., Szafra ´Nski, P., Słoczy ´Nska, K., and Marona, H., Bioorg. Med. Chem., 2015, vol. 23, pp. 6714–6724. https://doi.org/10.1016/j.bmc.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  18. Fernandes, C., Oliveira, L., Tiritan, M.E., Leitao, L., Pozzi, A., Noronha-Matos, J.B., Correia-De-Sa, P., and Pinto, M.M., Eur. J. Med. Chem., 2012, vol. 55, pp. 1–11. https://doi.org/10.1016/j.ejmech.2012.06.049

    Article  CAS  PubMed  Google Scholar 

  19. Hassan, N., Taher, M., and Susanti, D., Biomed. Pharmacother., 2018, vol. 106, pp. 1378–1389. https://doi.org/10.1016/j.biopha.2018.07.087

    Article  CAS  Google Scholar 

  20. Ruan, J., Zheng, C., Liu, Y., Qu, L., Yu, H., Han, L., Zhang, Y., and Wang, T., Molecules, 2017, vol. 22, pp. 1698–1716. https://doi.org/10.3390/molecules22101698

    Article  CAS  PubMed Central  Google Scholar 

  21. Cruz, M., Cidade, H., and Pinto, M., Future Med. Chem., 2017, vol. 9, pp. 1611–1630. https://doi.org/10.4155/fmc-2017-0086

    Article  CAS  PubMed  Google Scholar 

  22. Sinha, R. and El-Bayoumy, K., Curr. Cancer Drug Targets, 2004, vol. 4, pp. 13–28. https://doi.org/10.2174/1568009043481614

    Article  CAS  PubMed  Google Scholar 

  23. Mugesh, G., Mont, W.W., and Sies, H., Chem. Rev., 2001, vol. 101, pp. 2125–2180. https://doi.org/10.1021/cr000426w

    Article  CAS  PubMed  Google Scholar 

  24. Juang, S.H., Lung, C.C., Hsu, P.C., Hsu, K.S., Li, Y.C., and Hong, P.C., Mol. Cancer Ther., 2007, vol. 6, pp. 193–202. https://doi.org/10.1158/1535-7163.MCT-06-0482

    Article  CAS  PubMed  Google Scholar 

  25. Chen, T., Yum-Shing, W., Wenjie, Z., and Liu, J., Chem.Biol. Interact., 2009, vol. 180, pp. 54–60. https://doi.org/10.1016/j.cbi.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  26. Rukachaisirikul, V., Kamkaew, M., Sukavisit, D., Phongpaichit, S., Sawangchote, P., and Taylor, W.C., J. Nat. Prod., 2003, vol. 66, pp. 1531–1534. https://doi.org/10.1021/np200234e

    Article  CAS  PubMed  Google Scholar 

  27. Munekazu, I., Tosa, H., Tanaka, T., Asai, F., Kobayashi, Y., Shimano, R., and Ken-Ichi, M.J., Pharm. Pharmacol., 1996, vol. 48, pp. 861–865. https://doi.org/10.1111/j.2042-7158.1996.tb03988.x

    Article  Google Scholar 

  28. Venu Madhav, J., Thirupathi Reddy, Y., Narsimha Reddy, P., Nikhil Reddy, M., Kuarm, S., Crooks, P.A., and Rajitha, B., J. Mol. Catal. A, 2009, vol. 304, pp. 85–87. https://doi.org/10.1016/j.molcata.2009.01.028

    Article  CAS  Google Scholar 

  29. Kuarm, B.S., Venu Madhav, J., and Rajitha, B., J. Het. Chem., 2013, vol. 50, pp. 1337–1341. https://doi.org/10.1002/jhet.817

    Article  CAS  Google Scholar 

  30. Suresh, B.K., Venu Madhav, J., and Rajitha, B., Synth. Commun., 2012, vol. 42, pp. 1770–1777. https://doi.org/10.1080/00397911.2010.543964

    Article  CAS  Google Scholar 

  31. Kuarm, B.S., Venu Madhav, J., Thirupathi Reddy, Y., Narsimha Reddy, P., and Crooks, P.A., Synth. Commun., 2011, vol. 41, pp. 662–669. https://doi.org/10.1080/00397911003632899

    Article  CAS  Google Scholar 

  32. Kuarm, B.S., Venu Madhav, J., Laxmi, S.L., and Rajitha, B., Synth. Commun., 2012, vol. 42, pp. 1211–1217. https://doi.org/10.1080/00397911.2010.538483

    Article  CAS  Google Scholar 

  33. Suresh, B.K., Venu Madhav, J., Laxmi, S.L., Rajitha, B. Thirupathi Reddy, Y., Narsimha Reddy, P., and Crooks, P.A., Synth. Commun., 2010, vol. 40, pp. 3358–3364. https://doi.org/10.1080/00397910903419860

    Article  CAS  Google Scholar 

  34. Kuarm, B.S., Venu Madhav, J., Laxmi, S.L., Rajitha, B. Thirupathi Reddy, Y., Narsimha Reddy, P., and Crooks, P.A., Synth. Commun., 2011, vol. 41, pp. 1719–1724. https://doi.org/10.1080/00397911.2010.492076

    Article  CAS  Google Scholar 

  35. Suresh, B.K. and Rajitha, B., Synth. Commun., 2012, vol. 42, pp. 2382–2387. https://doi.org/10.1080/00397911.2011.557516

    Article  CAS  Google Scholar 

  36. Kuarm, B.S., Venu Madhav, J., and Rajitha, B., Lett. Org. Chem., 2011, vol. 8, pp. 549–553. https://doi.org/10.2174/157017811797249443

    Article  CAS  Google Scholar 

  37. Suresh, B.K., Janardan. B., and Rajitha, B., Chin. J. Chem., 2012, vol. 30, pp. 947–950. https://doi.org/10.1002/cjoc.201100137

    Article  CAS  Google Scholar 

  38. Kuarm. B.S., Venu Madhav, J., and Rajitha, B., Green Chem. Lett. Rev., 2013, vol. 6, pp.228–232. https://doi.org/10.1080/17518253.2012.752041

  39. Venu Madhav, J., Kuarm, B.S., Thirupathi Reddy, Y., and Crooks, P.A., Synth. Commun., 2008, vol. 38, pp. 3215–3223. https://doi.org/10.1080/00397910802109307

    Article  CAS  Google Scholar 

  40. Venu Madhav, J., Kuarm. B.S., and Rajitha, B., Synth. Commun., 2008, vol. 38, pp. 3514–3522. https://doi.org/10.1080/00397910802162975

    Article  CAS  Google Scholar 

  41. Rajitha, B. and Kuarm, B.S., Arkivoc, 2008, vol. Xiii, pp. 145–150. https://doi.org/10.3998/ark.5550190.0009.d17

  42. Rajitha, B., Kuarm, B.S., Thirupathi Reddy, Y., and Crooks, P.A., Chem. Res., 2008, vol. 2, pp. 232–234. https://doi.org/10.3184/030823408x313997

    Article  Google Scholar 

  43. Venu Madhav, J. and Rajitha, B., Arkivoc, 2008, vol. Xii, pp. 204–209. https://doi.org/10.3998/ark.5550190.0009.222

  44. Kuarm, B.S., Reddy, Y.T., Venumadhav, J., Crooks, P.A., and Rajitha, B., Bio. Med. Chem. Lett., 2011, vol. 21, pp. 524–527. https://doi.org/10.1016/j.bmcl.2010.10.082

    Article  CAS  Google Scholar 

  45. Laxmi, S.V., Kuarm, B.S., Reddy, Y.T., Crooks, P.A., and Rajitha, B., Bio.Med. Chem. Lett., 2011, vol. 21, pp. 4329–4331. https://doi.org/10.1016/j.bmcl.2011.05.055

    Article  CAS  Google Scholar 

  46. Laxmi, S.V., Kuarm, B.S., and Rajitha, B., Med. Chem. Res., 2013, vol. 22, pp. 768–774. https://doi.org/10.1007/s00044-012-0078-y

    Article  CAS  Google Scholar 

  47. Cruickshank, R., Duguid, J.P., Marmion, B.P., and Swain, R.H.A., Medical Microbiologyi, 12th ed., 1975, vol. II.

    Google Scholar 

  48. Omrum, U., Arikan, S., Kocago, S., Semeak, B., and Unala, D., Microb. Infect. Dis., 2000, vol. 38, pp.101–107. https://doi.org/10.1016/S0732-8893(00)00177-2

    Article  Google Scholar 

  49. Malue, M., Bastide, J.M., and Biancard, A., Int. J. Antimicrob. Agents, 2005, vol. 25, pp. 321–328. https://doi.org/10.1016/j.ijantimicag.2004.11.010

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh Kuarm Bowroju or Rajitha Bavanthula.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain studies that use humans and animals as objects of research.

Conflict of Interests

The authors state that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowroju, S.K., Marumamula, H. & Bavanthula, R. Design and Synthesis of 11H-Xantheno[2,1-c][1,2,5]Selenadiazol-11-One Derivatives as Potent Antimicrobial and Antitubercular Agents. Russ J Bioorg Chem 47, 593–600 (2021). https://doi.org/10.1134/S1068162021020059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162021020059

Keywords:

Navigation