Skip to main content
Log in

Investigation of Natural Radioactivity in Wadi El Reddah Stream Sediments and Its Radiological Implications

  • Published:
Radiochemistry Aims and scope

Abstract

Wadi El Reddah has radiation exposure due to the presence of different types of complexed rocks along with a huge sector of Hammamat sedimentary rocks, monzongranites of Gabal El Reddah, perthitic leucogranites of Gabal Gattar, as well as swarms of post-granitic dykes. The studied sediments show wide variation in their uranium, thorium, radium (eU), and potassium (K, %) contents. The U content ranges from 5 to 51 ppm with an average of 17.33 ppm; the Th content, from 16 to 141 pp with an average of 32.47 ppm. Ra (eU) varies from 5 to 26 ppm with an average of 9.56 ppm, and the potassium content ranges from 2.19 to 4.41% with an average of 3.19%. The absorbed dose rate (D), annual effective dose equivalent (AEDE), radium equivalent activity (Raeq), external (Hex) and internal (Hin) hazard indices, and the activity gamma index (Iγ) caused by gamma-emitting natural radionuclides were determined from the obtained values of the 238U, 232Th, and 40K content. Most of the studied samples were out of range with respect to the universal standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mira, H.I., Abed, N.S., Tantawy, H.R., and Tawfic, A.F., Int. J. Environ. Anal. Chem., 2020. https://doi.org/10.1080/03067319.2020.1796991

  2. El Rakaiby, M.L. and Shalaby, M.H., Int. J. Remote Sensing, 1998, vol. 13, no. 12, pp. 2337–2347.

    Article  Google Scholar 

  3. Matolin, M., A Report to the Government of the Arab Republic of Egypt. Construction and Use of Spectrometric Calibration Pads, Laboratory of Gamma-Ray Spectrometry, EGY/4/030-03, 1991.

  4. Sources and Effects of Ionizing Radiation: UNSCEAR Report to General Assembly, with Scientific Annexes, New York: UN, 2000.

  5. Ȍrgün, Y., Altınsoy, N.Ş., Ahin, S.Y., Güngör, Y., Gültekin, A.H., Karahan, G., and Karacık, Z., Appl. Radiat. Isot., 2007, vol. 65, pp. 739–747.

    Article  Google Scholar 

  6. Tufail, M., Ahmad, N., Mirza, S.M., Mirza, N.M., and Khan, H.A., Sci. Total Environ., 1992, vol. 121, pp. 283–291.

    Article  CAS  Google Scholar 

  7. Saito, K. and Jacob, P., Radiat. Prot. Dosim., 1995, vol. 58, pp. 29–45.

    CAS  Google Scholar 

  8. Saito, K., Petoussi, H., and Zanki, M., Health Phys., 1998, vol. 74, pp. 698–706.

    Article  CAS  Google Scholar 

  9. Nada, A., Appl. Radiat. Isot., 2003, vol. 58, pp. 275–280.

    Article  CAS  Google Scholar 

  10. Lakehal, Ch., Ramdhane, M., and Boucenna, A., J. Environ. Radioact., 2010, vol. 101, pp. 377–379.

    Article  CAS  Google Scholar 

  11. Baykara, O., Karatepe, S., and Dŏgru, M., Radiat. Meas., 2011, vol. 46, pp. 153–158.

    Article  CAS  Google Scholar 

  12. Exposure to Radiation from Natural Radioactivity in Building Materials: Report by NEA Group of Experts, Paris: NEA–OECD, 1979.

  13. Abbady, A.G.E., Uosif, M.A.M., and El-Taher, A., J. Environ. Radioact., 2005, vol. 84, pp. 65–78.

    Article  CAS  Google Scholar 

  14. El-Galy, M.M., El-Mezayen, A.M., Said, A.F., El Mowafy, A.A., and Mohamed, M.S., J. Environ. Radioact., 2008, vol. 99, pp. 1075–1082.

    Article  CAS  Google Scholar 

  15. El-Aassy, I.E., Nada, A.A., El-Galy, M.M., El-Feky, M.G., Abdel Maksoud, T.M., Talaat, Sh.M., and Ibrahim, E.M., Appl. Radiat. Isot., 2012, vol. 70, pp. 1024–1033.

    Article  CAS  Google Scholar 

  16. Gamma-Ray Survey in Uranium Exploration: IAEA Tech. Rep. Ser. no. 186, Vienna: IAEA, 1979.

  17. Boyle, R.W., Geochemical Prospecting for Thorium and Uranium Deposits, Amsterdam: Elsevier, 1982.

    Google Scholar 

  18. Killen, P.G., Geophysics and Geochemistry in the Search for Metallic Ores, Hood, P.J., Ed., Geological Survey of Canada, Economic Geology Report 31, 1979, pp. 163–229.

    Google Scholar 

  19. Heinrich, E.W., Mineralogy and Geology of Radioactive Raw Materials, New York: McGraw-Hill, 1958.

    Google Scholar 

  20. Aly, G.M., Mineralogy, geochemistry and economic evaluation of some kaolin occurrences in Egypt, PhD Thesis (Geol.), Tanta Univ. (Egypt), 2006.

  21. Khattab, M.R., Tawfic, A.F., and Omar, A.M., Int. J. Environ. Anal. Chem., 2019. https://doi.org/10.1080/03067319.2019.1686495

  22. Tawfic, A.F., Mira, H.I., and Omar, A.M., Int. J. Environ. Anal. Chem., 2019. https://doi.org/10.1080/03067319.2019.1702172

  23. Harpy, N.M., El Dabour, S.E., Sallam, A.M., Nada, A.A., El Aassy, A.E., and El Feky, M.G., Environ. Forensics, 2019. https://doi.org/10.1080/15275922.2019.1695020

  24. Taha, S.H., Sallam, O.R., Abbas, A.E.A., and Abed, N.S., J. Environ. Anal. Chem., 2020. https://doi.org/10.1080/03067319.2020.1715377

  25. United Nations Sales Publication E.00.IX.3, New York: UN, UNSCEAR, 2000.

  26. Gamma-Ray Survey in Uranium Exploration, IAEA Tech. Rep. Ser. no. 186, Vienna: IAEA, 1979.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Omar.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfic, A.F., Omar, A., Abed, N.S. et al. Investigation of Natural Radioactivity in Wadi El Reddah Stream Sediments and Its Radiological Implications. Radiochemistry 63, 243–250 (2021). https://doi.org/10.1134/S1066362221020156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362221020156

Keywords:

Navigation