Skip to main content
Log in

Kossel Lines and X-ray Localized Conical Modes

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An alternative way of describing X-ray Kossel lines based on the theory of X-ray localized conical modes existing in perfect crystals is proposed. The theory of Kossel lines is presented within the approximation of a two-wave dynamical diffraction theory. The theoretical results are compared with known experimental data and demonstrate good general agreement with an experiment. The influence of essential crystal parameters (perfection, size, Borrmann effect, etc.) on the shape of Kossel lines is discussed. To prove the direct link between Kossel lines and X-ray localized conical modes, it is proposed to use an X-ray time-delay detection technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. W. Kossel, V. Loeck, and H. Voges, Z. Phys. 94, 139 (1935).

    Article  ADS  Google Scholar 

  2. S. Kikuchi, Jpn. J. Phys. 5, 83 (1928). https://doi.org/10.1038/1211019a0

    Article  Google Scholar 

  3. B. Sur, R. B. Rogge, R. P. Hammond, et al., Phys. Rev. Lett. 88, 06505 (2002).

    Article  Google Scholar 

  4. J. M. Cowley, Diffraction Physics (North-Holland, Amsterdam, 1995).

    Google Scholar 

  5. A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford Univ. Press, Oxford, 2001).

    MATH  Google Scholar 

  6. V. Geist and R. Flagmeyer, Phys. Status Solidi A 26, K1 (1974).

    Article  ADS  Google Scholar 

  7. V. V. Lider, Crystallogr. Rep. 56, 169 (2011).

    Article  ADS  Google Scholar 

  8. M. von Laue, Ann. Phys. Lpz. 23, 705 (1935).

    Article  Google Scholar 

  9. G. Borrmann, Z. Kristallogr. 120, 143 (1964).

    Google Scholar 

  10. V. A. Belyakov and N. Kaputkina, in Proceedings of the 14th International Symposium on Nanophysics and Nanoelectronics (Nizhny Novgorod, 2010), Vol. 2, p. 327.

  11. V. A. Belyakov, in Proceedings of the 24th International Symposium on Nanophysics and Nanoelectronics (Nizhny Novgorod, 2020), Vol. 2, p. 829.

  12. V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media, 2nd ed. (Springer, 2019), Chap. 5.

    Book  Google Scholar 

  13. A. M. Afanas’ev et al., JETP 95, 472 (2002).

    Article  ADS  Google Scholar 

  14. B. W. Batterman and H. Cole, Rev. Mod. Phys. 36, 681 (1964).

    Article  ADS  Google Scholar 

  15. V. A. Belyakov, Diffraction Optics of Complex Structured Periodic Media (Springer, 1992), Chap. 3.

    Book  Google Scholar 

  16. V. A. Belyakov and S. V. Semenov, J. Exp. Theor. Phys. 109, 687 (2009).

    Article  ADS  Google Scholar 

  17. G. Bortel, G. Faigel, M. Tegze, and A. Chumakov, J. Synchrotr. Rad. 23, 214 (2016). https://doi.org/10.1107/s1600577515019037

    Article  Google Scholar 

  18. J. Schmidtke and W. Stille, Eur. Phys. J. B 31, 179 (2003).

    Article  ADS  Google Scholar 

  19. A. M. Risse and J. Schmidtke, J. Phys. Chem. C 123, 2428 (2019). https://doi.org/10.1021/jpcc.8b11134

    Article  Google Scholar 

  20. L. Penninck, J. Beeckman, P. de Visschere, and K. Neyts, Phys. Rev. E 85, 041702 (2012).

    Article  ADS  Google Scholar 

  21. V. A. Belyakov, Crystals 10, 541 (2020). https://doi.org/10.3390/cryst10060541

    Article  Google Scholar 

  22. N. N. Salashenko, N. I. Chkhalo, S. V. Gaponov, et al., Centr. Eur. J. Phys. 1, 191 (2003).

    Google Scholar 

  23. P. Jonnard et al., Phys. Res. B 452, 12 (2019).

    Google Scholar 

  24. V. A. Belyakov, J. Exp. Theor. Phys. 124, 994 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed within the State assignment of the Ministry of Science and Higher Education of the Russian Federation (project no. 0033-2019-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Belyakov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakov, V.A. Kossel Lines and X-ray Localized Conical Modes. J. Exp. Theor. Phys. 132, 323–333 (2021). https://doi.org/10.1134/S1063776121030122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121030122

Navigation