Skip to main content
Log in

Implementation of Single-Qubit Quantum Gates Based on a Microwave Transition in a Single Rubidium Atom in an Optical Dipole Trap

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of experiments on the implementation of single-qubit quantum gates with a single 87Rb atom in an optical dipole trap with a wavelength of 850 nm are presented. The trap is formed by a long focal-length objective lens located outside the vacuum chamber of a magneto-optical trap. An atom is detected using a resonance fluorescence signal with an sCMOS video camera. The experiments involved the trapping and confinement of a single atom at times up to 50 s, optical pumping by polarized laser radiation, microwave transitions between two hyperfine sublevels of the ground state, and the measurement of the quantum state of the atom by pushing it from the trap. Rabi oscillations are observed during the “clock” microwave transition 5S1/2(F = 2, MF = 0) → 5S1/2(F = 1, MF = 0) between two operating qubit levels at a frequency of up to 4.2 kHz, a contrast of up to 95%, and a coherence time of up to 3 ms. These oscillations correspond to the implementation of two basic single-qubit quantum operations (Hadamard gate, NOT gate) from various initial qubit states with an average fidelity of 95.2 ± 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

    Article  ADS  Google Scholar 

  2. I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, and E. A. Yakshina, Phys. Usp. 59, 196 (2016).

    Article  ADS  Google Scholar 

  3. M. Saffman, J. Phys. B 49, 202001 (2016).

    Article  ADS  Google Scholar 

  4. D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A. Browaeys, Science (Washington, DC, U. S.) 354, 1021 (2016).

    Article  ADS  Google Scholar 

  5. T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra,X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Phys. Rev. Lett. 123, 230501 (2019).

    Article  ADS  Google Scholar 

  6. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Phys. Rev. Lett. 123, 170503 (2019).

    Article  ADS  Google Scholar 

  7. W. Lee, M. Kim, H. Jo, Y. Song, and J. Ahn, Phys. Rev. A 99, 043404 (2019).

    Article  ADS  Google Scholar 

  8. M. Schlosser, D. O. de Mello, D. Schäffner, T. Preuschoff, L. Kohfahl, and G. Birkl, J. Phys. B 53, 144001 (2020).

    Article  ADS  Google Scholar 

  9. S. R. Samoylenko, A. V. Lisitsin, D. Schepanovich, I. B. Bobrov, S. S. Straupe, and S. P. Kulik, Laser Phys. Lett. 17, 025203 (2020).

    Article  ADS  Google Scholar 

  10. T. F. Gallagher, Rydberg Atoms (Cambridge Univ. Press, Cambridge, 1994).

    Book  Google Scholar 

  11. N. Schlosser, G. Reymond, and P. Grangier, Phys. Rev. Lett. 89, 023005 (2002).

    Article  ADS  Google Scholar 

  12. E. A. Yakshina, D. B. Tretyakov, I. I. Beterov, V. M. Entin, C. Andreeva, A. Cinins, A. Markovski, Z. Iftikhar, A. Ekers, and I. I. Ryabtsev, Phys. Rev. A 94, 043417 (2016).

    Article  ADS  Google Scholar 

  13. M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L. Isenhower, and M. Saffman, Phys. Rev. A 88, 013420 (2013).

    Article  ADS  Google Scholar 

  14. M. Endres, H. Bernien, A. Keesling, H. Levine, E. R. Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M. Greiner, and M. D. Lukin, Science (Washington, DC, U. S.) 354, 1024 (2016).

    Article  ADS  Google Scholar 

  15. X. Li, F. Zhou, M. Ke, P. Xu, X.-D. He, J. Wang, and M.-S. Zhan, Appl. Opt. 57, 7584 (2018).

    Article  ADS  Google Scholar 

  16. V. A. Sautenkov, S. A. Saakyan, A. A. Bobrov, D. A. Kudrinskiy, E. V. Vilshanskaya, and B. B. Zelener, J. Russ. Laser Res. 40, 230 (2019).

    Article  Google Scholar 

  17. E. T. Davletov, V. V. Tsyganok, V. A. Khlebnikov, D. A. Pershin, D. V. Shaykin, and A. V. Akimov, Phys. Rev. A 102, 011302(R) (2020).

  18. E. S. Fedorova, D. O. Tregubov, A. A. Golovizin, D. A. Mishin, D. I. Provorchenko, K. Yu. Khabarova, V. N. Sorokin, and N. N. Kolachevsky, Quantum Electron. 50, 220 (2020).

    Article  ADS  Google Scholar 

  19. V. A. Vinogradov, K. A. Karpov, S. S. Lukashov, and A. V. Turlapov, Quantum Electron. 50, 520 (2020).

    Article  ADS  Google Scholar 

  20. A. M. Mashko, A. A. Meysterson, A. E. Afanasiev, and V. I. Balykin, Quantum Electron. 50, 530 (2020).

    Article  ADS  Google Scholar 

  21. I. I. Beterov, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, U. Singh, Ya. V. Kudlaev, K. Yu. Mityanin, K. A. Panov, N. V. Alyanova, and I. I. Ryabtsev, Quantum Electron. 50, 543 (2020).

    Article  ADS  Google Scholar 

  22. J. D. Pritchard, J. A. Isaacs, and M. Saffman, Rev. Sci. Instrum. 87, 073107 (2016).

    Article  ADS  Google Scholar 

  23. C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, and S. Kuhr, Nature (London, U.K.) 471, 319 (2011).

    Article  ADS  Google Scholar 

  24. T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isenhower, and M. Saffman, Phys. Rev. Lett. 114, 100503 (2015).

    Article  ADS  Google Scholar 

  25. V. M. Entin, E. A. Yakshina, D. B. Tretyakov, I. I. Beterov, and I. I. Ryabtsev, J. Exp. Theor. Phys. 116, 721 (2013).

    Article  ADS  Google Scholar 

  26. C. Sheng, X. He, P. Xu, R. Guo, K. Wang, Z. Xiong, M. Liu, J. Wang, and M. Zhan, Phys. Rev. Lett. 121, 240501 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 19-52-15010) (in terms of the theory of quantum informatics), the Russian Science Foundation (project no. 18-12-00313) (in terms of experimental implementation of quantum operations), the Foundation for Advanced Research (in terms of creating the experimental installation), and Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ryabtsev.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beterov, I.I., Yakshina, E.A., Tretyakov, D.B. et al. Implementation of Single-Qubit Quantum Gates Based on a Microwave Transition in a Single Rubidium Atom in an Optical Dipole Trap. J. Exp. Theor. Phys. 132, 341–353 (2021). https://doi.org/10.1134/S1063776121030134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121030134

Navigation