Skip to main content
Log in

Solitons in a Chiral Medium

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of a field in a thin waveguide surrounded by helically arranged two-level atoms is studied. The interaction of the induced polarizations of atoms with the field propagating inside the waveguide is described by a system of reduced Maxwell–Bloch equations (RMBEs) in the approximation of unidirectional propagation of the field. Nonlocal dipole–dipole interaction (DDI) of the polarizations of atoms in the helix is described in the approximation of the interaction of nearest neighbors in a curvilinear medium. Soliton solutions of an integrable reduction of the system of equations describing the asymmetric propagation of field pulses in the waveguide in the forward and backward directions are found by the method of Riemann problem with zeros. It is shown that, depending on the chirality sign or the propagation direction, a field pulse in the waveguide can have either the shape of a sharp peak or a nearly rectangular shape. Solutions describing the evolution of field pulses on a nonzero pedestal show that the shape and amplitude of the field pulses can be controlled by the external pumping parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 2007).

    Google Scholar 

  2. V. N. Konotop, J. Yang, and D. A. Zezyulin, Rev. Mod. Phys. 88, 035002 (2016). https://doi.org/10.1103/RevModPhys.88.035002

    Article  ADS  Google Scholar 

  3. C. Caloz, A. Alú, S. Tretyakov, D. Sounas, K. Achouri, and Z.-L. Deck-Léger, Phys. Rev. Appl. 10, 047001 (2018). https://doi.org/10.1103/PhysRevApplied.10.047001

    Article  ADS  Google Scholar 

  4. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, J. Appl. Phys. 76, 2023 (1994). https://doi.org/10.1103/PhysRevLett.73.1368

    Article  ADS  Google Scholar 

  5. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, Appl. Phys. Lett. 66, 2324 (1995). https://doi.org/10.1063/1.113970

    Article  ADS  Google Scholar 

  6. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006). https://doi.org/10.1103/PhysRevLett.97.167401V

    Article  ADS  Google Scholar 

  7. I. V. Shadrivov, V. A. Fedotov, D. Powell, Y. S. Kivshar, and N. I. Zheludev, New J. Phys. 13, 033025 (2011). https://doi.org/10.1088/1367-2630/13/3/033025

    Article  ADS  Google Scholar 

  8. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, Phys. Rev. Lett. 104, 253902 (2010). https://doi.org/10.1103/PhysRevLett.104.253902

    Article  ADS  Google Scholar 

  9. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001). https://doi.org/10.1063/1.1386407

    Article  ADS  Google Scholar 

  10. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, Phys. Rev. E 71, 037602 (2005). https://doi.org/10.1103/PhysRevLett.95.193903

    Article  ADS  Google Scholar 

  11. F. Biancalana, J. Appl. Phys. 104, 093113 (2008). https://doi.org/10.1063/1.3010299

    Article  ADS  Google Scholar 

  12. M. Krause, H. Renner, and E. Brinkmeyer, Electron. Lett. 44, 691 (2008). https://doi.org/10.1049/el:20080791

    Article  ADS  Google Scholar 

  13. V. Grigoriev and F. Biancalana, Opt. Lett. 36, 2131 (2011). https://doi.org/10.1364/OL.36.002131

    Article  ADS  Google Scholar 

  14. C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, Opt. Express 20, 21235 (2012). https://doi.org/10.1364/OE.20.021235

    Article  ADS  Google Scholar 

  15. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Springer, Berlin, 1984).

    MATH  Google Scholar 

  16. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999). https://doi.org/10.1007/978-94-017-2448-7

    Book  MATH  Google Scholar 

  17. A. A. Zabolotskii, Eur. Phys. J. Spec. Top. 173, 193 (2009). https://doi.org/10.1140/epjst/e2009-01074-x

    Article  Google Scholar 

  18. G. L. Lamb, Jr., Rev. Mod. Phys. 43, 99 (1971). https://doi.org/10.1103/RevModPhys.43.99

    Article  ADS  Google Scholar 

  19. A. A. Zabolotskii, Phys. Rev. A 80, 063616 (2009). https://doi.org/10.1103/PhysRevA.80.063616

    Article  ADS  Google Scholar 

  20. A. A. Zabolotskii, JETP Lett. 110, 319 (2019).

    Article  ADS  Google Scholar 

  21. J. M. Hyman, D. W. McLaughlin, and A. C. Scott, Phys. D (Amsterdam, Neth.) 3, 23 (1981). https://doi.org/10.1016/0167-2789(81)90117-2

  22. M. C. Benedict, V. A. Malyshev, E. D. Trifonov, and A. I. Zaitsev, Phys. Rev. A 43, 3845 (1991).

    Article  ADS  Google Scholar 

  23. C. M. Bowden and J. P. Dowling, Phys. Rev. A 47, 1247 (1993). https://doi.org/10.1103/physreva.47.1247

    Article  ADS  Google Scholar 

  24. Yu. B. Gaididei, K. Ø. Rasmussen, and P. L. Christiansen, Phys. Rev. E 52, 2951 (1995). https://doi.org/10.1103/PhysRevE.52.2951

    Article  ADS  Google Scholar 

  25. A. A. Zabolotskii, J. Exp. Theor. Phys. 127, 448 (2018). https://doi.org/10.1134/S1063776118090121

    Article  ADS  Google Scholar 

  26. S. V. Sazonov and N. V. Ustinov, Phys. Scr. 94, 115206 (2019).

    Article  ADS  Google Scholar 

  27. F. Wurthner, T. E. Kaiser, and Ch. R. Saha-Muller, Angew. Chem., Int. Ed. 50, 3376 (2011). https://doi.org/10.1002/anie.201002307

    Article  Google Scholar 

  28. A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, S. L. Yefimova, Y. V. Malyukin, and A. I. Plekhanov, J. Phys. Chem. C 118, 7599 (2014). https://doi.org/10.1021/jp412798u

    Article  Google Scholar 

  29. A. V. Sorokin, A. A. Zabolotskii, N. V. Pereverzev, I. I. Bespalova S. L. Yefimova, Y. V. Malyukin, and A. I. Plekhanov, J. Phys. Chem. C 119, 2743 (2015). https://doi.org/10.1021/jp5102626

    Article  Google Scholar 

  30. S. Sternberg, Curvature in Mathematics and Physics (Dover, New York, 2012).

    MATH  Google Scholar 

  31. J. K. Eilbeck, J. Phys. A: Math. Gen. 5, 1355 (1972). https://iopscience.iop.org/article/10.1088/0305-4470/5/9/008

    Article  ADS  Google Scholar 

  32. L. Allen and J. H. Eberly, Optical Resonanses and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zabolotskii.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskii, A.A. Solitons in a Chiral Medium. J. Exp. Theor. Phys. 132, 354–361 (2021). https://doi.org/10.1134/S1063776121030213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121030213

Navigation