Skip to main content
Log in

Encapsulation Characteristics of Cavitand Type Tetrabromo-Functionalized Resorcin[4]arenes in the Crystal Structure

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Single crystal X-ray diffraction analysis of upper rim functionalized tetrabromo-resorcin[4]arenes are presented and their guest encapsulation abilities are discussed. The Br-atoms either attached directly to resorcinarene rim or extended by methylene group (CH2–Br). The substituents on the upper-rim plays an important role in the guest encapsulation characteristic of the resorcinarene cavity. In the crystal structure the host–guest supramolecular systems were stabilized by C–H⋯O, C–H⋯π and C⋯H···Br nonbonding interactions. The Hirshfeld surfaces analysis and the related 2D fingerprint plots provided qualitative and quantitative account of the various supramolecular non-bonding interactions present within the crystal.

Graphic Abstract

Guest encapsulation characteristic of tetrabromo-functionalized resorcin[4]arenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atwood JL, Gokel GW, Barbour L (eds) (2017) Comprehensive supramolecular chemistry II. Elsevier Science, Oxford

    Google Scholar 

  2. Saylan Y, Erdem Ö, Inci F, Denizli A (2020) Advances in biomimetic systems for molecular recognition and biosensing. Biomimetics 5:20

    Article  CAS  Google Scholar 

  3. Gangemi CMA, Pappalardo A, Sfrazzetto GT (2015) Applications of supramolecular capsules derived from resorcin[4]arenes, calix[n]arenes and metallo-ligands: from biology to catalysis. RSC Adv 5:51919–51933

    Article  CAS  Google Scholar 

  4. Knipe PC, Thompson S, Hamilton AD (2016) Molecular recognition in biomimetic receptors. In: Izatt RM (ed) Macrocyclic and supramolecular chemistry: how Izatt-Christensen Award winners shaped the field. Wiley, Hoboken

    Google Scholar 

  5. Li J (ed) (2017) Supramolecular CHEMISTRY OF BIOMIMETIC SYSTEMS. Springer, New York

    Google Scholar 

  6. Pinalli R, Boccini F, Dalcanale E (2011) Cavitand-based coordination cages: achievements and current challenges. Isr J Chem 51:781–797

    Article  CAS  Google Scholar 

  7. Jain VK, Kanaiya PH (2011) Chemistry of calix[4]resorcinarenes. Russ Chem Rev 80:75–102

    Article  CAS  Google Scholar 

  8. Al-Azemi TF, Vinodh M, Alipour FH (2016) Bis-resorcin[4]arene–bridged porphyrin conjugates: synthesis, fluorescence and binding studies. RSC Adv 6:76482–76489

    Article  CAS  Google Scholar 

  9. Al-Azemi TF, Vinodh M (2015) Effect of the resorcin[4]arene host on the catalytic epoxidation of a Mn(III)-based resorcin[4]arene–metalloporphyrin conjugate. RSC Adv 5:88154–88159

    Article  CAS  Google Scholar 

  10. Zhang Q, Catti L, Tiefenbacher K (2018) Catalysis inside the hexameric resorcinarene capsule. Acc Chem Res 51:2107–2114

    Article  CAS  Google Scholar 

  11. Puttreddy R, Beyeh NK, Taimoory SM, Meister D, Trantand JF, Rissanen K (2018) Host–guest complexes of conformationally flexible C-hexyl-2-bromoresorcinarene and aromatic N-oxides: solid-state, solution and computational studies. Beilstein J Org Chem 14:1723–1733

    Article  CAS  Google Scholar 

  12. Schroeder T, Sahu SN, Mattay J (2012) Molecular capsules derived from resorcin[4]arenes by metal-coordination. Top Curr Chem 319:99–124

    Article  CAS  Google Scholar 

  13. Beyeh NK, Rissanen K (2011) Dimericresorcin[4]arene capsules in the solid state. Isr J Chem 51:769–780

    Article  CAS  Google Scholar 

  14. Lu BB, Yang J, Liu YY, Ma JF (2017) A polyoxovanadate–resorcin[4]arene-based porous metal–organic framework as an efficient multifunctional catalyst for the cycloaddition of CO2 with epoxides and the selective oxidation of sulfides. Inorg Chem 56:11710–11720

    Article  CAS  Google Scholar 

  15. Liu W, Yang H, Wu W, Gao H, Xu S, Guo Q, Liu Y, Xu S, Cao S (2016) Calix[4]resorcinarene-based branched macromolecules for all-optical photorefractive applications. J Mater Chem C 4:10684–10690

    Article  CAS  Google Scholar 

  16. Zong W, Wang L, Guo Q, Li J, Wu W, Liu Y, Xu S, Cao S (2019) A calix[4]resorcinarene-based hyper-structured molecule bearing disperse red 1 as the chromophore with enhanced photorefractive performance under non-electric field. Dyes Pigm 160:579–586

    Article  CAS  Google Scholar 

  17. Zhai QY, Su J, Guo TT, Yang J, Ma JF, Chen JS (2018) Two porous polyoxometalate-resorcin[4]arene-based supramolecular complexes: selective adsorption of organic dyes and electrochemical properties. Cryst Growth Des 18:6046–6053

    Article  CAS  Google Scholar 

  18. Kobayashi K, Yamanakaa M (2015) Self-assembled capsules based on tetrafunctionalized calix[4]resorcinarene cavitands. Chem Soc Rev 44:449–466

    Article  CAS  Google Scholar 

  19. Smith JN, Lucas NT (2018) Rigid tetraarylene-bridged cavitands from reduced-symmetry resorcin[4]arene derivatives. Chem Commun 54:4716–4719

    Article  CAS  Google Scholar 

  20. Husain AA, Maknenko AM, Bisht KS (2016) Spatially directional resorcin[4]arene cavitand glycoconjugates for organic catalysis. Chem Eur J 22:6223–6227

    Article  CAS  Google Scholar 

  21. Corradi S, Mazzoccanti G, Ghirga F, Quaglio D, Nevola L, Massera C, Ugozzoli F, Giannini G, Alessia Ciogli A, D’Acquarica I (2018) Synthesis of bromoundecyl resorc[4]arenes and applications of the cone stereoisomer as selector for liquid chromatography. J Org Chem 83:7683–7693

    Article  CAS  Google Scholar 

  22. Al-Azemi TF, Vinodh M (2011) Synthesis of porphyrin conjugates based on conformationally rigid and flexible resorcin[4]arene frameworks. Tetrahedron 67:2585–2590

    Article  CAS  Google Scholar 

  23. Vinodh M, Al-Azemi TF (2019) Cavitand and flexible amphiphilic resorcin[4]arenes: structural characterization and supramolecular interactions in crystal networks. J Chem Crytallogr. https://doi.org/10.1007/s10870-019-00819-z

    Article  Google Scholar 

  24. Pinalli R, Dalcanale E, Ugozzoli F, Massera C (2016) Resorcinarene-based cavitands as building blocks for crystal engineering. CrystEngComm 18:5788–5802

    Article  CAS  Google Scholar 

  25. Nakamura A, Sato T, Kuroda R (2003) Novel layered structures of the crystals based on C-methylcalix[4]resorcinarene formed at high temperature. CrystEngComm 5:318–325

    Article  CAS  Google Scholar 

  26. Pedrini A (2019) Host–guest supramolecular interactions between a resorcinarene-based cavitand bearing a –COOH moiety and acetic acid. Acta Crystallogr E Cryst Commun 75:397–401

    Article  CAS  Google Scholar 

  27. Gropp C, Quigley BL, Diederich F (2018) Molecular recognition with resorcin[4]arene cavitands: switching, halogen-bonded capsules, and enantioselective complexation. J Am Chem Soc 140:2705–2717

    Article  CAS  Google Scholar 

  28. Purse BW, Rebek J (2005) Functional cavitands: chemical reactivity in structured environments. Proc Natl Acad Sci USA 102:10777–10782

    Article  CAS  Google Scholar 

  29. Helttunen K, Shahgaldian P (2010) Self-assembly of amphiphilic calixarenes and resorcinarenes in water. New J Chem 34:2704–2714

    Article  CAS  Google Scholar 

  30. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman AM, CrystalExplorer17 (2017). University of Western Australia. http://hirshfeldsurface.ne

  31. Wu R, Al-Azemi TF, Bisht KS (2009) Spatially directional multiarm poly(epsilon-caprolactone) based on resorcin[4]arene cavitand core. Chem Commun 14:1822–1824

    Article  Google Scholar 

  32. Ruizhi W, Al-Azemi TF, Bisht KS (2014) Influence of a resorcin[4]arene core structure on the spatial directionality of multi-arm poly(ε-caprolactone)s. RSC Adv 4:16864–16870

    Article  Google Scholar 

  33. Dueno EE, Bisht KS (2004) Synthesis of polyhydroxy cavitands and intramolecular inclusion of their octaester derivatives. Tetrahedron 60:10859–10868

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C71:3–8

    Google Scholar 

  35. Spackman AM, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  36. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Cryst B 60:627–668

    Article  Google Scholar 

  37. McKinnon JJ, Jayatilaka D, Spackman AM (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun 37:3814–3816

    Article  Google Scholar 

Download references

Acknowledgements

The support received from the University of Kuwait, made available through research grant no. SC 09/09, and the facilities of RSPU (Grant Nos. GS 03/08, GS 01/01 and GS 01/03) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talal F. Al‑Azemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10870_2021_889_MOESM1_ESM.docx

Supplementary file1 (DOCX 6207 KB)

Single crystal data for compounds RCBr4 (CCDC XXXX), and RCCH2Br4 (CCDC XXX) have been deposited in the Cambridge Crystallographic Data Center. Supplementary data associated with this article can be found, in the online version at http://www.ccdc.cam.ac.uk/conts/retrieving.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinodh, M., Al‑Azemi, T.F. Encapsulation Characteristics of Cavitand Type Tetrabromo-Functionalized Resorcin[4]arenes in the Crystal Structure. J Chem Crystallogr 52, 43–52 (2022). https://doi.org/10.1007/s10870-021-00889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00889-y

Keywords

Navigation