Skip to main content
Log in

A Blow-Up Result for a Generalized Tricomi Equation with Nonlinearity of Derivative Type

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this note, we prove a blow-up result for a semilinear generalized Tricomi equation with nonlinear term of derivative type, i.e., for the equation \(\mathcal {T}_\ell u=|\partial _t u|^p\), where \(\mathcal {T_\ell }=\partial _t^2-t^{2\ell }\Delta \). Smooth solutions blow up in finite time for positive Cauchy data when the exponent p of the nonlinear term is below \(\frac{\mathcal {Q}}{\mathcal {Q} -2}\), where \(\mathcal {Q}=(\ell +1)n+1\) is the quasi-homogeneous dimension of the generalized Tricomi operator \(\mathcal {T}_\ell \). Furthermore, we get also an upper bound estimate for the lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, W., Palmieri, A.: A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case. Evol. Equ. Control Theory. (2020). https://doi.org/10.3934/eect.2020085

  2. D’Abbicco, M., Lucente, S.: A modified test function method for damped wave equations. Adv. Nonlinear Stud. 13(4), 867–892 (2013)

    Article  MathSciNet  Google Scholar 

  3. D’Ambrosio, L., Lucente, S.: Nonlinear Liouville theorems for Grushin and Tricomi operators. J. Differential Equations 193, 511–541 (2003)

    Article  MathSciNet  Google Scholar 

  4. D’Ancona, P.: A note on a theorem of Jörgens. Math. Z. 218, 239–252 (1995)

    Article  MathSciNet  Google Scholar 

  5. D’Ancona, P., Di Giuseppe, A.: Global Existence with Large Data for a Nonlinear Weakly Hyperbolic Equation. Math. Nachr. 231, 5–23 (2001)

    Article  MathSciNet  Google Scholar 

  6. Ebert, M.R., Reissig, M.: Methods for partial differential equations. Qualitative properties of solutions, phase space analysis, semilinear models. Birkhaüser/Springer, Cham (2018)

    MATH  Google Scholar 

  7. Franchi, B., Lanconelli, E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 10(4), 523–541 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_t=\Delta u+ u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo 13, 109–124 (1966)

    Google Scholar 

  9. He, D., Witt, I., Yin, H.: On the global solution problem for semilinear generalized Tricomi equations. I. Calc. Var. 56, 21 (2017)

    Article  MathSciNet  Google Scholar 

  10. He, D., Witt, I., Yin, H.: On semilinear Tricomi equations with critical exponents or in two space dimensions. J. Differential Equations 263(12), 8102–8137 (2017)

    Article  MathSciNet  Google Scholar 

  11. He, D., Witt, I., Yin, H.: On semilinear Tricomi equations in one space dimension. Preprint, arXiv:1810.12748, (2018)

  12. Hidano, K., Wang, C., Yokoyama, K.: The Glassey conjecture with radially symmetric data. J. Math. Pures Appl. 98(9), 518–541 (2012)

    Article  MathSciNet  Google Scholar 

  13. Kato, T.: Blow-up of solutions of some nonlinear hyperbolic equations. Comm. Pure Appl. Math. 33(4), 501–505 (1980)

    Article  MathSciNet  Google Scholar 

  14. Lai, N.A., Takamura, H.: Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey’s conjecture. Differential and Integral Equations 32(1–2), 37–48 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Lin, J., Tu, Z.: Lifespan of semilinear generalized Tricomi equation with Strauss type exponent. Preprint, arXiv:1903.11351v2, (2019)

  16. Lucente, S.: Large data solutions for critical semilinear weakly hyperbolic equations. Proceeding of the Conference Complex Analysis & Dinamical System VI, Contemporary Mathematics 653, 251–276 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Lucente, S.: Critical exponents and where to find them. Bruno Pini Mathematical Analysis Seminar 9, 102–114 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Lucente, S.: 4D Semilinear Weakly Hyperbolic Wave Equations. In: D’Abbicco, M., Ebert, M., Georgiev, V., Ozawa, T. (eds.) New Tools for Nonlinear PDEs and Application. Trends in Mathematics. Birkhäuser, Cham (2019)

    Google Scholar 

  19. Lupo, D., Payne, K.R.: Conservation laws for equations of mixed elliptic-hyperbolic and degenerate types. Duke Math. J. 127(2), 251–290 (2005)

    Article  MathSciNet  Google Scholar 

  20. Mitidieri, E., Pohozaev, S.I.: A Priori Estimates of Solutions to Nonlinear Partial Differential Equations and Inequalities and Applications. Proc. Steklov Institute of Mathematics 234, 1–375 (2001)

    MATH  Google Scholar 

  21. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.C.W.: NIST Handbook of Mathematical Functions, p. 966. Cambridge University Press (2010)

  22. Palmieri, A.: An integral representation formula for the solutions of a wave equation with time-dependent damping and mass in the scale-invariant case. Preprint, arXiv:1905.02408 (2019)

  23. Palmieri, A., Reissig, M.: A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J. Differential Equations 266, 1176–1220 (2019)

    Article  MathSciNet  Google Scholar 

  24. Palmieri, A., Takamura, H.: Nonexistence of global solutions for a weakly coupled system of semilinear damped wave equations of derivative type in the scattering case. Mediterr. J. Math 17, 13 (2020)

    Article  MathSciNet  Google Scholar 

  25. Palmieri, A., Tu, Z.: A blow-up result for a semilinear wave equation with scale-invariant damping and mass and nonlinearity of derivative type. Calc. Var. Partial Differ. Equ. 60, 72 (2021). https://doi.org/10.1007/s00526-021-01948-0

  26. Smirnov, M.M.: Equations of Mixed Type. Translations of Mathematical Monographs, vol. 51, American Mathematical Society, Providence, RI (1978)

  27. Strauss, W.A.: Nonlinear scattering theory at low energy. J. Funct. Anal. 41(1), 110–133 (1981)

    Article  MathSciNet  Google Scholar 

  28. Yagdjian, K.: A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J. Differential Equations 206, 227–252 (2004)

    Article  MathSciNet  Google Scholar 

  29. Yagdjian, K.: The self-similar solutions of the one-dimensional semilinear Tricomi-type equations. J. Differential Equations 236, 82–115 (2007)

    Article  MathSciNet  Google Scholar 

  30. Yagdjian, K., Galstian, A.: Fundamental Solutions for the Klein-Gordon Equation in de Sitter Spacetime. Comm. Math. Phys. 285, 293–344 (2009)

    Article  MathSciNet  Google Scholar 

  31. Zhou, Y.: Blow up of solutions to the Cauchy problem for nonlinear wave equations. Chin. Ann. Math. Ser. B 22(3), 275–280 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A. Palmieri is supported by the GNAMPA project ‘Problemi stazionari e di evoluzione nelle equazioni di campo nonlineari dispersive’. S. Lucente is supported by the PRIN 2017 project ‘Qualitative and quantitative aspects of nonlinear PDEs’ and by the GNAMPA project ‘Equazioni di tipo dispersivo: teoria e metodi’. The authors gratefully thank to the referee for the careful reading, the constructive comments which help to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Palmieri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucente, S., Palmieri, A. A Blow-Up Result for a Generalized Tricomi Equation with Nonlinearity of Derivative Type. Milan J. Math. 89, 45–57 (2021). https://doi.org/10.1007/s00032-021-00326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-021-00326-x

Keywords

Mathematics Subject Classification

Navigation