Skip to main content
Log in

Impact of Sea Surface Temperature Anomalies in the Equatorial and North Pacific on the Arctic Stratosphere According to the INMCM5 Climate Model Simulations

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Five 50-year simulations with version 5 of the INM RAS coupled climate model revealed that the winters with El Niño are characterized by higher Arctic stratospheric temperature as compared to the seasons with La Niña. Lower stratospheric temperature in the Arctic regions as compared to the seasons with negative sea surface temperature (SST) anomalies corresponds to the winter seasons with positive SST anomalies in the North Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. P. N. Vargin, S. V. Kostrykin, and E. M. Volodin, “Analysis of Simulation of Stratosphere-troposphere Dynamical Coupling with the INM-CM5 Climate Model,” Meteorol. Gidrol., No. 11 (2018) [Russ. Meteorol. Hydrol., No. 11, 43 (2018)].

  2. E. M. Volodin and S. V. Kostrykin, “The Aerosol Module in the INM RAS Climate Model,” Meteorol. Gidrol., No. 8 (2016) [Russ. Meteorol. Hydrol., No. 8, 41 (2016)].

  3. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykosov, A. S. Gritsun, N. A. Diansky, A.V. Gusev, and N. G. Yakovlev, “Simulation of Modern Climate with the New Version of the INM RAS Climate Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 53 (2017) [Izv., Atmos. Oceanic Phys., No. 2, 53 (2017)].

  4. I. V. Zheleznova and D. Yu. Gushchina, “The Response of Global Atmospheric Circulation to Two Types of El Niño,” Meteorol. Gidrol., No. 3 (2015) [Russ. Meteorol. Hydrol., No. 3, 40 (2015)].

  5. B. Ayarzaguena, A. Charlton-Perez, A. Butler, P. Hitchcock, I. Simpson, L. Polvani, N. Butchart, E. Gerber, L. Gray, B. Hassler, P. Lin, F. Lott, E. Manzini, R. Mizuta, C. Orbe, S. Osprey, D. Saint-Martin, M. Sigmond, M. Taguchi, E. Volodin, and S. Watanabe, “Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphere-troposphere Coupling to Quadrupled CO2 Concentrations in CMIP6 Models,” J. Geophys. Res. (2020) (in press).

  6. B. Ayarzaguena, J. Lopez-Parages, M. Iza, N. Calvo, and B. Rodriguez-Fonseca, “Stratospheric Role in Interdecadal Changes of El Niño Impacts over Europe,” Climate Dynamics, 52 (2018).

  7. C. Bell, L. Gray, A. Charlton-Perez, and M. Joshi, “Stratospheric Communication of El Niño Teleconnections to European Winter,” J. Climate, 22 (2009).

  8. A. Butler and L. Polvani, “El Niño, La Niña, and Stratospheric Sudden Warmings: A Reevaluation in Light of the Observational Record 2011,” Geophys. Res. Lett., 38 (2011).

  9. A. Butler, D. Seidel, S. Hardiman, N. Butchart, T. Birner, and A. Match, “Defining Sudden Stratospheric Warmings,” Bull. Amer. Meteorol. Soc., 96 (2015).

  10. S. Chen, B. Yu, W. Chen, and R. Wu, “A Review of Atmosphere–Ocean Forcings Outside the Tropical Pacific on the El Niño–Southern Oscillation Occurrence,” Atmosphere, 9 (2018).

  11. D. Domeisen, C. Garfinkel, and A. Butler, “The Teleconnection of El Niño Southern Oscillation to the Stratosphere,” Rev. Geophys., 57 (2018).

  12. T. Ermakova, O. Aniskina, I. Statnaia, M. Motsakov, and A. Pogoreltsev, “Simulation of the ENSO Influence on the Extra-tropical Middle Atmosphere,” Earth, Planets and Space, No. 8, 71 (2019).

  13. M. Hurwitz, P. Newman, and C. Garfinkel, “On the Influence of North Pacific Sea Surface Temperature on the Arctic Winter Climate,” J. Geophys. Res., 117 (2012).

  14. A. R. Jakovlev and S. P. Smyshlyaev, “Simulation of the Influence of the Ocean and the El-Niño–Southern Oscillation Phenomenon on the Structure and Composition of the Atmosphere,” IOP Conf. Ser.: Earth Environ. Sci., 386 (2019).

  15. G. Manney, Z. Lawrence, M. Santee, W. Read, N. Livesey, A. Lambert, L. Froidevaux, H. Pumphrey, and M. Schwartz, “A Minor Sudden Stratospheric Warming with a Major Impact: Transport and Polar Processing in the 2014/2015 Arctic Winter,” Geophys. Res. Lett., 42 (2015).

  16. H. Nakamura, G. Lin, and T. Yamagata, “Decadal Climate Variability in the North Pacific during the Recent Decades,” Bull. Amer. Meteorol. Soc., 78 (1997).

  17. J. Oehrlein, G. Chiodo, and L. Polvani, “Separating and Quantifying the Distinct Impacts of El Niño and Sudden Stratospheric Warmings on North Atlantic and Eurasian Wintertime Climate,” Atmos. Sci. Lett., 20 (2019).

  18. A. Santoso, M. Mcphaden, and W. Cai, “The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño,” Rev. Geophys., 55 (2017).

  19. K. E. Trenberth, “El Niño Southern Oscillation (ENSO),” in Reference Module in Earth Systems and Environmental Sciences (2013).

  20. B. Weare, “Tropospheric-stratospheric Wave Propagation during El Niño–Southern Oscillation,” J. Geophys. Res., 115 (2010).

  21. I. Weinberger, C. Garfinkel, I. White, and L. Oman, “The Salience of Nonlinearities in the Boreal Winter Response to ENSO: Arctic Stratosphere and Europe,” Climate Dynamics, 53 (2019).

  22. D. S. Wilks, Statistical Methods in the Atmospheric Sciences, 2nd ed. (Elsevier, Oxford, 2006).

  23. S.-W. Yeh, W. Cai, S.-K. Min, M. J. McPhaden, D. Dommenget, B. Dewitte, and J.-S. Kug, “ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing,” Rev. Geophys., 56 (2018).

Download references

Funding

The research was supported by the Russian Foundation for Basic Research (project number 19-05-00370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Vargin.

Additional information

Russian Text ©The Author(s), 2021, published in Meteorologiya i Gidrologiya, 2021, No. 1, pp. 5-16.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargin, P.N., Kolennikova, M.A., Kostrykin, S.V. et al. Impact of Sea Surface Temperature Anomalies in the Equatorial and North Pacific on the Arctic Stratosphere According to the INMCM5 Climate Model Simulations. Russ. Meteorol. Hydrol. 46, 1–9 (2021). https://doi.org/10.3103/S1068373921010015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921010015

Keywords

Navigation