Skip to main content
Log in

Mathematical Model for the Elastoplastic State of Stress of the Material at the Crack Tip

  • DEFORMATION AND FRACTURE MECHANICS
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

An analytical model is developed to describe the elastoplastic state of stress of the material in the prefracture zone in front of the crack tip. The error of estimating the maximum normal stress in this zone is shown to be 6% in comparison with the results of finite element calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. G. Matvienko, Models and Criteria of Fracture Mechanics (Fizmatlit, Moscow, 2006).

    Google Scholar 

  2. X. K. Zhu and J. A. Joyce, “Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization,” Eng. Fract. Mech. 85, 1–46 (2012).

    Article  Google Scholar 

  3. J. M. Barsom and S. T. Rolf, Fracture and Fatigue Control in Structures. Application of Fracture Mechanics (Englewood Cliffs, New Jersey, 1987).

  4. E399–90. Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials (ASTM Int., West Conshohocken, 1997).

  5. Yu. G. Matvienko, Trends of Nonlinear Fracture Mechanics in Issues of Mechanic Engineering (Inst. Komp’yut. Issled., Izhevsk, 2015).

    Google Scholar 

  6. A. V. Sibilev and V. M. Mishin, “Criterion of cold brittleness of steel samples on the basis of criterion of local fracture,” Fundam. Issled., Ser. Tekh. Nauki, No. 4, 843–847 (2013).

    Google Scholar 

  7. A. A. Chevrychkina, A. A. Gruzdkov, and Yu.V. Petrov, “Nonlocal criteria of fracture in problems with heterogeneous stress field,” Fiz. Tverd. Tela, 59 (8), 1570–1575 (2017).

    Google Scholar 

  8. V. M. Kornev, “Distribution of stresses and crack opening in prefracture zone,” Fiz. Mezomekh. 7 (3), 53–62 (2004).

    Google Scholar 

  9. S. Sokolov and A. Grachev, “Local criterion for strength of elements of steelwork,” Mech. Eng. Res. Educ. 12 (5), 448–453 (2018).

    CAS  Google Scholar 

  10. S. A. Sokolov, A. A Grachev, and I. A. Vasil’ev, “Analysis of strength of structure element with crack under conditions of negative climatic temperature,” Vestn. Mashinostr., No. 11, 42–46 (2019).

  11. I. A. Vasil’ev and S. A. Sokolov, “Studying elastoplastic state of stress of a plate with crack,” Deform. Razrushenie Mater., No. 3, 16–20 (2020).

  12. L. A. Kopel’man, Foundations of the Strength Theory of Weld Structures (Lan’, St. Petersburg, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Vasil’ev.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, S.A., Vasil’ev, I.A. & Grachev, A.A. Mathematical Model for the Elastoplastic State of Stress of the Material at the Crack Tip. Russ. Metall. 2021, 347–350 (2021). https://doi.org/10.1134/S0036029521040315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521040315

Keywords:

Navigation