Skip to main content
Log in

Dysfunction of the Monoaminergic Brain System in BALB/c Mice Progeny after Sodium Valproate Administration to Pregnant Females: Neurochemical Study

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—We studied the dopamine-, serotonin-, and norepinephrinergic systems in various brain structures of BALB/c male mice on days 15, 42, and 64 of postnatal development (PND) in the model of autism spectrum disorder induced by sodium valproate administration (400 mg/kg, s/c) to pregnant females. It was found that the level of both catechol- and indolamines in the brain structures of control 15-day-old mice is considerably lower than in 64-day-old adult animals. Prenatal administration of sodium valproate (SV) caused a decrease in all parameters of monoaminergic neurotransmission in the striatum of mouse offspring aged 15 days but did not lead to neurochemical changes in other studied brain structures. By PND 42, the general pattern of changes in neurotransmitter concentrations did not differ from the developmental dynamics of neurotransmitter system maturation in the control group. The level of DA kept increasing and by PND 64, did not differ from controls. The parameters of serotonergic system changed similarly, with the peak serotonin concentration by PND 42 and a significant decrease by PND 64, whereas the level of 5-HIAA in the striatum increased gradually with maximum differences observed by PND 64. Thus, the data obtained suggest that administration of SV to pregnant females affects the activity of the dopamine- and serotonergic brain systems in the progeny, inducing its decrease in the striatum by PND 15 followed by recovery to control level by PND 64.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Moreno-Fuenmayor, H., Borjas, L., Arrieta, A., Valera, V., and Socorro-Candanoza, L., Invest Clin., 1996, vol. 37, no. 2, pp. 113–128.

    CAS  PubMed  Google Scholar 

  2. Shimmura, C., Suda, S., Tsuchiya, K.J., Hashimoto, K., Ohno, K., Matsuzaki, H., Iwata, K., Matsumoto, K., Wakuda, T., Kameno, Y., Suzuki, K., Tsujii, M., Nakamura, K., Takei, N., and Mori, N., PLoS One, 2011, vol. 6, no. 10, p. E25340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adamsen, D., Meili, D., Blau, N., Thony, B., and Ramaekers, V., Mol. Genet. Metab., 2011, vol. 102, no. 3, pp. 368–73.

    Article  CAS  PubMed  Google Scholar 

  4. Devlin, B., Cook, E.H.Jr., Coon, H., Dawson, G., Grigorenko, E.L., McMahon, W., Minshew, N., Pauls, D., Smith, M., Spence, M.A., Rodier, P.M., Stodgell, C., and Schellenberg, G.D., Mol. Psychiatry, 2005, vol. 10, no. 12, pp. 1110–1116.

    Article  CAS  PubMed  Google Scholar 

  5. Kistner-Griffin, E., Brune, C.W., Davis, L.K., Sutcliffe, J.S., Cox, N.J., and Cook, E.H., Am. J. Med.Genet. B (Neuropsychiatr. Genet.), 2011, vol. 156, no. 2, pp. 139–144.

    Article  Google Scholar 

  6. Margoob, M.A. and Mushtaq, D., Indian J. Psychiatry, 2011, vol. 53, no. 4, pp. 289–299.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Castelli, M., Nigrelli, D., Gorina, A.S., Laumonnier, F., and Bertolino, G., Rivista di Psichiatria, 2000, vol. 40, no. 5, pp. 39–44.

    Google Scholar 

  8. Aman, M.G. and Kern, R.A., J. Am. Acad. Child. Adolesc. Psychiatry, 1989, vol. 28, pp. 549–565.

    Article  CAS  PubMed  Google Scholar 

  9. Martineau, J., Barthelemy, C., Jouve, J., Muh, J.P., and Lelord, G., Dev. Med. Child. Neurol., 1992, vol. 34, no. 7, pp. 593–603.

    Article  CAS  PubMed  Google Scholar 

  10. Gorina, A.S. and Kolesnichenko, L.S., Mezhdunarodn. Zhurn. po Immunoreabilitatsii, 1999, no. 5, pp. 119–123.

  11. Gorina, A.S., Kolesnichenko, L.S., and Mikhnovich, V.I., Biomed. Khimiya, 2011, vol. 57, no. 5, pp. 562–570.

    Article  CAS  Google Scholar 

  12. Narita, N., Kato, M., Tazoe, M., Miyazaki, K., Narita, M., and Okado, N., Pediatr. Res., 2002, vol. 52, no. 4, pp. 576–579.

    CAS  PubMed  Google Scholar 

  13. Bossu, J.L. and Roux, S., Med. Sci. (Paris), 2019, vol. 35, no. 3, pp. 236–243.

    Article  Google Scholar 

  14. Lee, T. and Gorzalka, B., Neurosci., 2012, vol. 204, pp. 17–30.

    Article  CAS  Google Scholar 

  15. Nadorova, A.V., Kolik, L.G., Klodt, P.M., Narkevich, V.B., Naplekova, P.L., Kozlovskaya, M.M., Kudrin, V.S., and Seredenin, S.B., Neirokhimiya, 2014, vol. 31, no. 2, pp. 1–7.

    Google Scholar 

  16. Druse, M.J., Tajuddin, N., and Kuo, A., J. Neurosci. Res., 1990, vol. 27, no. 2, pp. 233–240.

    Article  CAS  PubMed  Google Scholar 

  17. Herrregodts, P., Velkeniers, B., Ebinger, G., Michotte, Y., Vanhaelst, L., and Hooghe-Peters, E., J. Neurochem., 1990, no. 55, pp. 774–779.

  18. Lajtha, N.S., Handbook of Neurochemistry and Molecular Neurobiology. 3rd ed., Lajtha N.S., A. Johnson, A. Dianna, Eds., New York, 2007.

    Book  Google Scholar 

  19. Brady, S., Basic Neurochemistry Principles of Molecular, Cellular, and Medical Neurobiology. 8th ed., Brady, S., Siegel, G., Wayne Albers, R., and Price, D., Eds, Oxford, 2012.

  20. Jung, A.B. and Bennett, J.P., Dev. Brain Res., 1996, no. 94, pp. 109–120.

  21. Schambra, U.B., Duncan, G.E., Breese, G.R., Fornaretto, M.G., Caron, M.G., and Fremeau, R.T., Jr., J. Neurosci., 1994, vol. 62, no. 1, pp. 65–85.

  22. Antonopoulos, J., Dori, I., Dinopoulos, A., Chiotelli, M., and Parnavelas, J.G., Neurosci., 2002, vol. 110, no. 2, pp. 245–256.

    Article  CAS  Google Scholar 

  23. Brumback, A.C., Ellwood, I.T., Kjaerby, C., Iafrati, J., Robinson, S., Lee, A.T., Patel, T., Nagaraj, S., Davatolhagh, F., and Sohal, V.S., Mol. Psychiatry, 2018, vol. 23, no. 10, pp. 2078–2089.

    Article  CAS  PubMed  Google Scholar 

  24. Nakasato, A., Nakatani, Y., Seki, Y., Tsujino, N., Umino, M., and Arita, H., Brain Res., 2008, vol. 1193, pp. 128–135.

    Article  CAS  PubMed  Google Scholar 

  25. Hara, Y., Yakugaku Zasshi, 2019, vol. 139, no. 11, pp. 1391–1396.

    Article  CAS  PubMed  Google Scholar 

  26. Hara, Y., Takuma, K., Takano, E., Katashiba, K., Taruta, A., Higashino, K., Hashimoto, H., Ago, Y., and Matsuda, T., Behav. Brain Res., 2015, vol. 289, pp. 39–47.

    Article  CAS  PubMed  Google Scholar 

  27. Hara, Y., Ago, Y., Taruta, A., Hasebe, Sh., Kawase, H., Tanabe, W., and Tsukada, Sh., Psychopharmacol. (Berlin), 2017, vol. 234, pp. 3217–3228.

    Article  CAS  Google Scholar 

  28. Adam, A., Kemecsei, R., Company, V., Murcia-Ramon R., Juarez, I., Gerecsei, L.I., Zachar, G., Echevarria, D., Puelles, E., Martinez, S., and Csillag, A., Front. Neuroanat., 2020. https://doi.org/10.3389/fnana.2020.00029

Download references

Funding

The work was performed within the scope of state program for the Zakusov Institute of Pharmacology (State Assignment no. 0521-2019-0007: Developing treatments for epilepsy, Parkinson’s disease, and autism based on new data on the pathogenesis of the indicated diseases).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kudrin.

Ethics declarations

Conflict of interests. The authors declare no conflicts of interest.

Ethical approval. Organizing and conducting experiments were in compliance with “Rules of good laboratory practice of the Russian Federation” approved by the Order of the Ministry of Health of the Russian Federation № 199 of April 1, 2016. The animals were kept in accordance with SP 2.2.1.3218-14 “Sanitary and epidemiological requirements to arrangement, equipment and maintenance of biological clinics (vivariums)” of August 29, 2014. The experimental procedures were approved by the Bioethics Commission of the FSBSI “Research Institute of Pharmacology Named after V. V. Zakusov” (protocol no. 6 of April 16, 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudrin, V.S., Narkevich, V.B., Alymov, A.A. et al. Dysfunction of the Monoaminergic Brain System in BALB/c Mice Progeny after Sodium Valproate Administration to Pregnant Females: Neurochemical Study. Neurochem. J. 15, 59–64 (2021). https://doi.org/10.1134/S1819712421010062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712421010062

Keywords:

Navigation