Skip to main content
Log in

Influence of Hemantane on Changes in Ca2+ and Na+ Caused by Activation of NMDA Channels in Cultured Rat Brain Neurons

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—One of the leading mechanisms of neurodegeneration in Parkinson’s disease is excitotoxicity of glutamate, the main excitatory brain neurotransmitter. Excitotoxicity develops as a result of excessive stimulation of ionotropic NMDA glutamate receptors. Drugs reversibly inhibiting NMDA receptors are considered as promising pharmacological agents that prevent the death of neurons and slow down neurodegeneration. In this work, we studied the effect of N-(2-adamantyl)-hexamethyleneimine hydrochloride (hemantane) on changes in the intracellular concentration of Ca2+ ([Ca2+]i), Na+ ([Na+]i) and mitochondrial potential (ΔΨm) induced by NMDA in cultured neurons. Cultures were prepared from the cerebral cortex of 1-2-day-old Wistar rats. Experiments with animals were performed in accordance with the ethical principles and regulatory documents recommended by the European Convention on the Protection of Vertebrate Animals. The measurements of [Ca2+]i, [Na+]i and ΔΨm were taken using a fluorescence microscopy system based on an Olympus IX-71 inverted microscope with a Sutter Lambda 10-2 multi-wavelength illumination system and a cooled CoolSnap HQ CCD camera. The system was controlled using the MetaFluor software. It was shown that short-term subtoxic doses of NMDA (2–3 min, 10 μM) cause a rapid rise in [Ca2+]i, which is reversibly inhibited by high concentrations of Mg2+ (10 mM) and hemantane (100 μM). Prolonged administration of the neurotoxic NMDA concentration (20 min, 500 μM) caused the development of delayed calcium deregulation (DCD), a steady rise in [Na+]i and a profound drop in ΔΨm. Hemantane (100 μM) reduced [Ca2+]i elevation, postponed the development of DCD, reduced mitochondrial depolarization, and helped to restore the initial values of [Ca2+]i, [Na+]i and ΔΨm after NMDA washout. Unlike hemantane, the high-affinity non-competitive inhibitor of NMDA channels MK-801 irreversibly blocked changes in [Ca2+]i and ΔΨm, even at a high NMDA concentration (500 μM). Obviously, hemantane exhibits neuroprotective properties due to a decrease in Ca2+ and Na+ fluxes through NMDA channels and a lower elevation of [Ca2+]i and [Na+]i. The reversibility of NMDA channel inhibition favors the normalization of brain functioning after termination of hemantane administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Amenta, F., Zaccheo, D., and Collier, W.L., Mech. Ageing Dev, 1991, vol. 61, no. 3, pp. 249–273.

    Article  CAS  Google Scholar 

  2. Kolacheva, A.A., Kozina, E.A., Khakimova, G.R., Kucheryanu, V.G., Kudrin, V.S., Nigmatullina, R.R., Bazyan, A.S., Grigor’yan, G.A., and Ugryumov, M.V., Neirodegenerativnye zabolevaniya: ot genoma do tselostnogo organizma (Neurodegenerative diseases: from genome to entire body), Ugryumov, M.V., Eds., Moscow: Nauchnyi mir, 2014, vol. 1, pp. 356–422.

  3. Nicholls, D.G., Martin, A.R., Wallace, B.D., and Fuchs, P.A., From Neuron to Brain, Sunderland: Sinauer Associates, 2001.

    Google Scholar 

  4. Sobolevsky, A.I., J. Physiol., 2015, vol. 593, no. 1, pp. 29–38.

    Article  CAS  Google Scholar 

  5. Dirnagl, U., Iadecola, C., and Moskowitz, M.A., Trends Neurosci., 1999, vol. 22, no. 9, pp. 391–397.

    Article  CAS  Google Scholar 

  6. Nicholls, D.G. and Budd, S.L., Physiol. Rev., 2000, vol. 80, no. 1, pp. 315–360.

    Article  CAS  Google Scholar 

  7. Khodorov, B., Prog. Biophys. Mol. Biol, 2004, vol. 86, no. 2, pp. 279–351.

    Article  CAS  Google Scholar 

  8. Hardingham, G.E., Biochem. Soc. Trans., 2009, vol. 37, no. 6, pp. 1147–1160.

    Article  CAS  Google Scholar 

  9. Hardingham, G.E. and Bading, H., Nat. Rev. Neurosci., 2010, vol. 11, no. 10, pp. 682–696.

    Article  CAS  Google Scholar 

  10. Chen, H.S.V., Pellegrini, J.W., Aggarwal, S.K., Lei, S.Z., Warach, S., Jensen, F.E., and Lipton, S.A., J. Neurosci., 1992, vol. 12, no. 11, pp. 4427–4436.

    Article  CAS  Google Scholar 

  11. Parsons, C.G., Danysz, W., and Quack, G., Neuropharmacology, 1999, vol. 38, no. 6, pp. 735–767.

    Article  CAS  Google Scholar 

  12. Chen, H.S.V. and Lipton, S.A., J. Neurochem., 2006, vol. 97, no. 6, pp. 1611–1626.

    Article  CAS  Google Scholar 

  13. Stayte, S. and Vissel, B., Front. Neurosci, 2014, vol. 8.

  14. Freitas, M.E. and Fox, S.H., Neurodegener. Dis. Manag., 2016, vol. 6, no. 3, pp. 249–268.

    Article  Google Scholar 

  15. Kapitsa, I.G., Ivanova, E.A., Avdyunina, N.I., and Voronina, T.A., Khim.-Farm. Zh., 2019, vol. 53, no. 5, pp. 3–7.

    Google Scholar 

  16. Olivares, D.K., Deshpande, V., Shim Y.K., Lahiri, D.H., Greig, N.T., Rogers, J., and Huang, X, Curr. Alzheimer Res., 2013, vol. 9, no. 6, pp. 746–758.

    Article  Google Scholar 

  17. Sobolevsky, A.I. and Yelshansky, M.V., J. Physiol., 2000, vol. 526, no. 3, pp. 493–506.

    Article  CAS  Google Scholar 

  18. Elshanskaya, M.V., Sobolevskii, A.I., Val’dman, E.A., and Khodorov, B.I., Eksperim. Klin. Farmakol, 2001, vol. 64, no. 1, pp. 18–21.

    CAS  Google Scholar 

  19. Voronina, N.A., Kucheryanu, V.G., Kapitsa, I.G., and Voronina, T.A., Patogenez, 2019, vol. 17, no. 4, pp. 57–62.

    Google Scholar 

  20. Ivanova, E.A., Kapitsa, I.G., Zolotov, N.N., Val’dman, E.A., Nepoklonov, A.V., Kolyasnikova, K.N., and Voronina, T.A., Farmakokinetika i Farmakodinamika, 2016, vol. 3, pp. 9–12.

    Google Scholar 

  21. Krasil'nikova, I., Surin, A., Sorokina, E., Fisenko, A., Boyarkin, D., Balyasin, M., Demchenko, A., Pomytkin, I., and Pinelis, V., Front. Neurosci., 2019, vol. 13.

  22. Seredenin, S.B., Voronina, T.A., Avdyunina, N.I., Morozov, I.S., Bykov, N.P., and Nerobkova, L.N., RF Patent No. 1825499, 1991.

  23. Nerobkova, L.N., Val’dman, E.A., Voronina, T.A., Markina, N.V., and Sharkova, L.M., Eksp. Klin. Farmakol., 2000, vol. 63, no. 3, pp. 3–6.

    CAS  PubMed  Google Scholar 

  24. Sharipov, R.R., Krasil’nikova, I.A., Pinelis, V.G., Gorbacheva, L.R., and Surin, A.M., Biol. Membr., 2018, vol. 35, no. 5, pp. 384–397.

    Google Scholar 

  25. Vergun, O., Keelan, J., Khodorov, B.I., and Duchen, M.R., J. Physiol., 1999, vol. 519, no. 2, pp. 451–466.

    Article  CAS  Google Scholar 

  26. Duchen, M.R., Surin, A., and Jacobson, J., Methods Enzymol., 2003, vol. 361, pp. 353–389.

    Article  CAS  Google Scholar 

  27. Brittain, M.K., Brustovetsky, T., Sheets, P.L., Brittain, J.M., Khanna, R., Cummins, T.R., and Brustovetsky, N., Neurobiol. D, vol. 46, no. 1, pp. 109–117.

  28. Khodorov, B.I., Storozhevykh, T.P., Surin, A.M., Sorokina, E.G., Yuravichus, A.I., Borodin, A.V., Vinskaya, N.P., Khaspekov, L.G., and Pinelis, V.G., Biol. Membr., 2001, vol. 18, no. 6, pp. 421–432.

    CAS  Google Scholar 

  29. Genrikhs, E.E., Aleksandrova, O.P., Stel’mashuk, E.V., Novikova, S.V., Voronkov, D.N., Isaev, N.K., and Khaspekov, L.G., Annaly Klinicheskoi i eksperimental’noi nevrologii, 2019, vol. 13, no. 4, pp. 38–45.

  30. Zinchenko, V.P., Turovskaya, M.V., Teplov, I.Yu., Bepezhnov, A.V., and Turovsky, E.A., Biofizika, 2016, vol. 61, no. 1, pp. 102–111.

    Google Scholar 

  31. Aqrawe, Z., Patel, N., Vyas, Y., Bansal, M., Montgomery, J., Travas-Sejdic, J., and Svirskis, D., PLoS One, 2020, vol. 15, no. 8.

Download references

Funding

The study was carried out according to the State tasks nos. 0520-2019-0029 and AAAA-A19-119012590191-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Surin.

Ethics declarations

Conflict of interests. The authors declare no conflicts of interest.

Ethical approval. Experiments with animals were performed in accordance with the ethical principles and regulatory documents recommended by the European Convention for the Protection of Vertebrate Animals used for Experiments (Guide for the Care and Use of Laboratory Animals: Eighth Edition. 2010), as well as in accordance with the “Rules of Good Laboratory Practice” approved by order of the Ministry of Health of the Russian Federation No. 199n of April 1, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronina, N.A., Lisina, O.Y., Krasilnikova, I.A. et al. Influence of Hemantane on Changes in Ca2+ and Na+ Caused by Activation of NMDA Channels in Cultured Rat Brain Neurons. Neurochem. J. 15, 8–17 (2021). https://doi.org/10.1134/S1819712421010165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712421010165

Keywords:

Navigation