Skip to main content
Log in

Evaluation of Groundwater Inflow into an Iron Mine Surrounded by an Imperfect Grout Curtain

Bewertung des Grundwasserzustroms in eine von einem unvollkommenen Dichtungsschleier umschlossenen Eisenmine

Evaluación de la entrada de agua subterránea en una mina de hierro rodeada por una cortina de lechada imperfecta

缺陷注浆帷幕内铁矿的地下水涌水量预测

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Grout curtains are often used to manage lateral water inflow. However, grout curtains constructed in extremely fractured rocks are not very effective, which poses a challenge for mine drainage and mining operations. So, it is crucial to consider the curtain’s effectiveness when evaluating water inflow. Large-scale pumping tests and groundwater numerical simulation were used in this study to evaluate the water inflow at an iron mine surrounded by an imperfect grout curtain. The effectiveness of the curtain was determined by comparing the hydraulic differences on both sides of the curtain and flow fields at pre- and post-grouting stages and three preferential seepage paths were identified. Given the mine’s complex boundary conditions, the telescopic mesh refinement modeling method was used; regional and local models were established using FEFLOW. The predicted inflow due to the gap in the curtain was 13,880 m3/day, accounting for 37.1% of the total 37,340 m3/day of water that still flowed into the mine. Two countermeasures, surface curtain remediation and underground grouting, were used to decrease water inflow and restore mine productivity.

Zusammenfassung

Dichtungsschleier werden häufig eingebaut, um den lateralen Wasserzustrom zu steuern. Allerdings sind Dichtungsschleier, die in extrem zerklüftetem Gestein errichtet wurden, nicht sehr effektiv, was eine Herausforderung für die Grubenentwässerung und den Bergbaubetrieb darstellt. Daher ist es wichtig, die Effektivität des Schleiers bei der Bewertung des Wasserzustroms zu berücksichtigen. In dieser Studie wurden großmaßstäbliche Pumpversuche und numerische Grundwassersimulationen eingesetzt, um den Wasserzufluss in einer Eisenmine zu bewerten, die von einem unvollkommenen Dichtungsschleier umschlossen ist. Die Effektivität des Schleiers wurde durch den Vergleich der hydraulischen Druckdifferenzen auf beiden Seiten des Schleiers und der Strömungsfelder vor und nach der Abdichtung ermittelt, und es wurden drei bevorzugte Sickerpfade identifiziert. Angesichts der komplexen Randbedingungen des Bergwerks wurde die Modellierungsmethode der teleskopischen Netzverfeinerung verwendet; regionale und lokale Modelle wurden mit FEFLOW erstellt. Der vorhergesagte Zufluss aufgrund der Lücke im Schleier betrug 13.880 m3/d, was 37,1 % der insgesamt 37.340 m3/d Wasser ausmachte, die noch in die Mine flossen. Zwei Gegenmaßnahmen wurden eingesetzt, um den Wasserzufluss zu verringern und die Produktivität der Mine wiederherzustellen: die Sanierung des Oberflächenschleiers und das Verpressen unter Tage.

Resumen

Las cortinas de lechada se utilizan frecuentemente para evitar la entrada de agua lateral. Sin embargo, las cortinas de lechada construidas en rocas extremadamente fracturadas no son muy eficaces, lo que plantea un desafío para el drenaje de las minas y las operaciones mineras. Por lo tanto, es crucial considerar la efectividad de la cortina cuando se evalúa la irrupción de agua. En este estudio se utilizaron pruebas de bombeo a gran escala y simulación numérica de aguas subterráneas para evaluar la irrupción de agua en una mina de hierro rodeada por una cortina de lechada imperfecta. La eficacia de la cortina se determinó comparando las diferencias hidráulicas a ambos lados de la cortina y los campos de flujo en las etapas previas y posteriores a la lechada y se identificaron tres vías de filtración principales. Dadas las complejas condiciones de los límites de la mina, se utilizó el método de modelación del refinamiento de la malla telescópica; se establecieron modelos regionales y locales utilizando FEFLOW. El caudal previsto debido a la brecha en la cortina fue de 13.880 m3/d, lo que representa el 37,1% del total de 37.340 m3/d de agua que aún fluía en la mina. Se utilizaron dos contramedidas, la remediación de la cortina de superficie y la lechada subterránea, para disminuir la entrada de agua y restaurar la productividad de la mina.

缺陷注浆帷幕内铁矿的地下水涌水量预测

注浆帷幕常用以控制侧向地下水流。但是,建立在极破碎围岩内的注浆帷幕可能不完全有效,仍会给矿山排水和采矿带来安全挑战。因此,涌水量评价时,考虑注浆帷幕效果致关重要。研究采用了大规模抽水试验和地下水数值模拟方法预测帷幕存在缺陷的铁矿的涌水量。通过对比帷幕两侧水力差异和注浆前后流场变化,评价了注浆帷幕效果,识别出三条优先流路径。考虑矿井边界条件复杂,采用伸缩网格细化法(TMR),建立了区域和局部FEFLOW地下水流模型。预测穿过帷幕间隙的涌水量13 880 m3/d,占现汇入矿井总涌水量37 340 m3/d的37.1%。采取了地表帷幕整治和井下注浆两种措施减少涌水量和恢复生产。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson MP, Woessner WW, Hunt RJ (2015) Applied groundwater modeling: simulation of flow and advective transport. Academic Press

    Google Scholar 

  • ASTM (International) (2008) Standard guide for calibrating a groundwater flow model application D5981-96. American Society of Testing and Materials. ASTM International

    Google Scholar 

  • Battaglia D, Birindelli F, Rinaldi M, Vettraino E, Bezzi A (2016) Fluorescent tracer tests for detection of dam leakages: the case of the Bumbuna dam Sierra Leone. Eng Geol 205:30–39

    Article  Google Scholar 

  • Candeias C, Ávila PF, Ferreira SE, Paulo JT (2015) Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, central Portugal). Environ Monit Assess 187(3):135–158

    Article  Google Scholar 

  • Carter TG, Dershowitz W (2012) Improved methods of design for grouting fractured rock. In: Grouting and deep mixing, geotechnical special publications (GSP), vol 28, pp 1472–1483

  • Chen WC, Li WP, Qiao W, Li LF (2020) Beneficial use of deep ordovician limestone water from mine safety dewatering at the Xinglongzhuang coal mine, north China. Mine Water Environ 39:42–56

    Article  Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans AGU 27(4):526–534

    Article  Google Scholar 

  • Davis GM, Horswill P (2002) Groundwater control and stability in an excavation in a magnesian limestone near Sunderland, NE England. Eng Geol 66(1):1–18

    Article  Google Scholar 

  • DHI-WASY (2017) FEFLOW 7.1 User Manual. DHI-WASY GmbH, Berlin Germany. http://www.feflow.com/uploads/media/users_manual71.pdf. Accessed 5 Mar 2020

  • Dong D, Sun W, Xi S (2012) Optimization of mine drainage capacity using FEFLOW for the no. 14 coal seam of China’s Linnancang coal mine. Mine Water Environ 31:353–360

    Article  Google Scholar 

  • DZ/T 0285 (2015) Technical guide for mine grout curtains in China. Standards Press of China, Beijing (in Chinese)

  • Guo JF (2005) Problems in exploitation of China complicated hard to mine ore deposit and countermeasures. Met Mine 12:10–13 ((in Chinese))

    Google Scholar 

  • He K, Wang R, Jiang WF (2012) Groundwater inrush channel detection and curtain grouting of the Gaoyang iron ore mine. China Mine Water Environ 31(4):297–306

    Article  Google Scholar 

  • Hu YB, Li WP, Wang QQ, Liu SL, Wang ZK (2019) Evaluation of water inrush risk from coal seam floors with an AHP-EWM algorithm and GIS. Environ Earth Sci 78:290–305

    Article  Google Scholar 

  • Huang F, Wang GH, Yang YY, Wang CB (2014) Overexploitation status of groundwater and induced geological hazards in China. Nat Hazards 73:727–741

    Article  Google Scholar 

  • Hunt RJ, Steuer JJ, Mansor MTC, Bullen TD (2001) Delineating a recharge area for a spring using numerical modeling, Monte Carlo techniques, and geochemical investigation. Groundwater 39(5):702–712

    Article  Google Scholar 

  • Leake SA, Claar DV (1999) Procedures and computer programs for telescopic mesh refinement using MODFLOW. Geol Surv Open File Rep, U.S. https://doi.org/10.3133/ofr99238

    Book  Google Scholar 

  • Liu SL, Li WP (2019) Indicators sensitivity analysis for environmental engineering geological patterns caused by underground coal mining with integrating variable weight theory and improved matter-element extension model. Sci Total Environ 686:606–618

    Article  Google Scholar 

  • Liu SL, Li WP, Qi W, Li XQ, Wang QQ, He JH (2019) Zoning method for mining-induced environmental engineering geological patterns considering the degree of influence of mining activities on phreatic aquifer. J Hydrol 578:124720

    Google Scholar 

  • Medeiros WE, Nascimento AFD, Silva FCA, Destro N, Demétrio JGA (2010) Evidence of hydraulic connectivity across deformation bands from field pumping tests: two examples from Tucano Basin, NE Brazil. J Struct Geol 32(11):1783–1791

    Article  Google Scholar 

  • Mendecki AJ (1997) Seismic monitoring in mines. Chapman & Hall, London

    Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  • Murray Darling Basin Commission (MDBC) (2001) Groundwater flow modeling guideline. Report prepared by Aquaterra

  • Qiao W, Li WP, Li T, Chang JY, Wang QQ (2017) Effects of coal mining on shallow water resources in semiarid regions: a case study in the Shennan mining area, Shaanxi, China. Mine Water Environ 36:104–113

    Article  Google Scholar 

  • Ta D, Cao S, Steyl G, Yang HY, Li Y (2019) Prediction of groundwater inflow into an iron mine: a case study of the Thach Khe iron mine, Vietnam. Mine Water Environ 38(2):310–324

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Eos Trans AGU 16(2):519–524

    Article  Google Scholar 

  • Tzampoglou P, Loupasakis C (2018) Evaluating geological and geotechnical data for the study of land subsidence phenomena at the perimeter of the Amyntaio coalmine, Greece. Int J Min Sci Technol 28:601–612

    Article  Google Scholar 

  • Wang J, Liu X, Wu YB, Liu SL, Wu LG, Lou RX, Lu JS, Yin Y (2017) Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering. J Hydrol 549:277–293

    Article  Google Scholar 

  • Ward DS, Buss DR, Mercer JW, Hughes SS (1987) Evaluation of a groundwater corrective action at the Chem-Dyne hazardous waste site using a telescopic mesh refinement modeling approach. Water Resour Res 23(4):603–617

    Article  Google Scholar 

  • Wu Q, Liu YZ, Wu XL, Liu SQ, Sun WJ, Zeng YF (2016) Assessment of groundwater inrush from underlying aquifers in Tunbai coal mine, Shanxi province, China. Environ Earth Sci 75:737–750

    Article  Google Scholar 

  • Wu Q, Guo XM, Shen JJ, Xu S, Liu SQ, Zeng YF (2017) Risk assessment of water inrush from aquifers underlying the Gushuyuan coal mine, China. Mine Water Environ 36:96–103

    Article  Google Scholar 

  • Xue S, Liu Y, Liu S, Li WP, Wu YL, Pei YB (2018) Numerical simulation for groundwater distribution after mining in Zhuanlongwan mining area based on visual MODFLOW. Environ Earth Sci 77:400–409

    Article  Google Scholar 

  • Yang Z, Li WP, Li XQ, He JH (2019) Quantitative analysis of the relationship between vegetation and groundwater buried depth: a case study of a coal mine district in Western China. Ecol Indic 102:770–782

    Article  Google Scholar 

  • Zhang GL, Zhan KY, Sui WH (2011) Experimental investigation of the impact of flow velocity on grout propagation during chemical grouting into a fracture with flowing water. J China Coal Soc 36:403–406 ((in Chinese))

    Google Scholar 

  • Zhang P, Yang T, Yu QL, Xu T, Shi WH, Li SC (2016) Study of a seepage channel formation using the combination of microseismic monitoring technique and numerical method in Zhangmatun iron mine. Rock Mech Rock Eng 49(9):3699–3708

    Article  Google Scholar 

  • Zhao CH (2013) Analysis on local and overall sensitivity of high pressurized hydrological parameters of aquifer. Coal Sci Technol 41(8):110–113

    Google Scholar 

  • Zhou N, Vermeer PA, Lou RX, Tang YQ, Jang SM (2010) Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence. Eng Geol 114(3–4):251–260

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Fundamental Research Funds of the State Key Program of National Natural Science of China (Grant No.41931284), and the National Basic Research Program of China (Grant No.2015CB251601). The authors also thank the reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Li.

Supplementary Information

Below is the link to the electronic supplementary material.

10230_2021_777_MOESM1_ESM.pdf

Supplementary Fig. 1 Vertical structure of pumping holes and observation holes. Notes: The units of casing or borehole diameter are millimeters (mm) (PDF 1839 kb)

Supplementary Fig. 2 Pumping flowrate change in PTAG (PDF 17 kb)

Supplementary Fig. 3 Water table calibration of all observation holes (PDF 1257 kb)

Supplementary file4 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, W., Wang, Q. et al. Evaluation of Groundwater Inflow into an Iron Mine Surrounded by an Imperfect Grout Curtain. Mine Water Environ 40, 520–538 (2021). https://doi.org/10.1007/s10230-021-00777-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-021-00777-z

Keywords

Navigation