Skip to main content

Advertisement

Log in

Numerical Simulation of Air Flows in the Loading Chute of an Aspiration Shelter with Multistage Recirculation Air Seal

  • ECOLOGY
  • Published:
Refractories and Industrial Ceramics Aims and scope

We consider the process of multistage technological recirculation of aspiration air into transfer chutes, i.e., the return of aspirated air from the shelters of the technological equipment back to the technological process with an aim to reduce energy losses by creating aerodynamic drag in the path of motion of ejection air and maintaining the required values of thermal parameters in the equipment. It is recommended to equip the chutes with single-stage recirculation seals with minimum possible angles of air feed against the flow ejected by the reloaded bulk material, which would increase the energy efficiency of ventilation systems and decrease the amount of harmful substances ejected into the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. A. B. Cecala, A. D. O’Brien, J. Schall, J. F. Colinet, R. J. Franta, M. J. Schultz, E. J. Haas, J. E. Robinson, J. Patts, B. M. Holen, R. Stein, J. Weber, M. Strebel, L. Wilson, and M. Ellis, Dust Control Handbook for Industrial Minerals Mining and Processing, 2nd edn., US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh–Spokane (2019).

  2. S. T. Huque, P. Donecker, J. J. Rozentals, and C. W. Benjamin, The Transfer Chute Design Manual: for Conveyor Belt Systems. Conveyor Transfer Design Pty. Limited (2010).

    Google Scholar 

  3. X. Li, Q.Wang, Q. Liu, and Y. Hu, “Developments in studies of air entrained by falling bulk materials,” Powder Technol., 291, 159 – 169 (2016).

    Article  CAS  Google Scholar 

  4. C. Fang, J. Xu, H. Zhao, W. Li, and H. Liu, “Experimental investigation on particle entrainment behaviors near a nozzle in gas-particle coaxial jets,” Powder Technol., 286, 55 – 63 (2015).

    Article  CAS  Google Scholar 

  5. Yu. G. Ovsyannikov and A. I. Alifanova, Aspiration Systems with Forced Recirculation: A Monograph [in Russian], Shukhov Belgorod State Technological University, Belgorod (2013).

    Google Scholar 

  6. I. N. Logachev, K. I. Logachev, and O. A. Averkova, “Local exhaust ventilation: aerodynamic processes and calculations of dust emissions,” CRC Press, Boca Raton (2015).

    Book  Google Scholar 

  7. K. I. Logachev, A. M. Ziganshin, and O. A. Averkova, “On the resistance of a round exhaust hood shaped by outlines of the vortex zones occurring at its inlet,” Build. Environ., 151, 338 – 347 (2019).

    Article  Google Scholar 

  8. A. M. Ziganshin and K. I. Logachev, “Minimizing local drag by shaping a flanged slotted hood along the boundaries of vortex zones occurring at inlet,” J. Build. Eng., 32, Article 101666 (2020).

    Article  Google Scholar 

  9. K. I. Logachev, A. M. Ziganshin, O. A. Averkova, and A. K. Logachev, “Asurvey of separated airflow patterns at the inlet of circular exhaust hoods,” Energy Build., 173, 58 – 70 (2018).

    Article  Google Scholar 

  10. K. I. Logachev, A. M. Ziganshin, and O. A. Averkova, “A study of separated flows at inlets of flanged slotted hoods,” J. Build. Eng., 29, Article 101159 (2020).

    Article  Google Scholar 

  11. O. A. Averkova, I. V. Kryukov, I. N. Logachev, and K. I. Logachev, “Analytical and experimental study of the air recirculation in a loading porous tube with a combined bypass chamber,” J. Eng. Phys. Thermophys., 90(2), 318 – 328 (2017).

    Article  Google Scholar 

  12. K. I. Logachev, I. V. Kryukov, and O. A. Averkova, “Simulation of air flows in ventilation shelters with recirculation,” Refract. Ind. Ceram., 56(4), 428 – 434 (2015).

    Article  Google Scholar 

  13. Z. Cao, Y. Wang, M. Duan, and H. Zhu, “Study of the vortex principle for improving the efficiency of an exhaust ventilation system,” Energ. Buildings, 142, 39 – 48 (2017).

    Article  Google Scholar 

  14. M. S. Gritskevich, A. K. Logachev, and K. I. Logachev, “Numerical investigation of flow near a round exhaust channel screened by an annular swirled jet,” J. Eng. Phys. Thermophys., 92(2), 468 – 476 (2019).

    Article  CAS  Google Scholar 

  15. A. B. Gol’tsov, K. I. Logachev, and O. A. Averkova, “Modeling dust and air flow within an aspirated shelter,” Refract. Ind. Ceram., 57(3) 325 – 331 (2016).

    Article  Google Scholar 

  16. A. B. Gol’tsov, K. I. Logachev, O. A. Averkova, and V. A. Tkachenko, “Simulation of the dust-air flow near a rotating disk cylinder suction unit,” Refract. Ind. Ceram., 60(2), 232 – 236 (2019).

    Article  Google Scholar 

  17. A. B. Gol’tsov, K. I. Logachev, O. A. Averkova, and V. A. Tkachenko, “Investigation of the dust-air flow near a vertical rotating cylindrical local exhaust,” Refract. Ind. Ceram., 59(6), 671 – 676 (2019).

    Article  Google Scholar 

  18. K. I. Logachev, and N. M. Anzheurov, “Flow analysis of slit-type suction ports shielded with slender visors,” Refract. Ind. Ceram., 44(3), 145 – 148 (2003).

    Article  CAS  Google Scholar 

  19. F. Cascetta and F. M. Rosano, “Assessment of velocity fields in the vicinity of rectangular exhaust hood openings,” Build. Environ., 36, 1137 – 1141 (2001).

    Article  Google Scholar 

  20. F. L. Haan, P. P. Sarkar, and W. A. Gallus, “Design, construction and performance of a large tornado simulator for wind engineering applications,” Eng. Struct., 4(30), 1146 – 1159 (2008).

    Article  Google Scholar 

  21. Yu. G. Ovsyannikov, A. B. Gol’tsov, A. S. Seminenko, et al., “Reducing the power consumption of ventilation systems through forced recirculation,” Refract. Ind. Ceram., 57(5), 557 – 561 (2017).

    Article  Google Scholar 

  22. V. M. Kireev, A. B. Goltsov, and A. S. Seminenko, “The use of the Coandă effect in energy-efficient recirculating aspiration systems,” IOP Conf. Ser. Mater. Sci. Eng., 463, Article 032020 (2018).

    Article  Google Scholar 

  23. V. M. Kireev, A. B. Goltsov, A. S. Seminenko, and Y. G. Ovsyannikov, “Creation of a new energy-efficient design of the dust-exhaust system,” IOP Conf. Ser. Mater. Sci. Eng., 552, Article 012021 (2019).

    Article  Google Scholar 

  24. I. N. Logachev, E. N. Popov, K. I. Logachev, and O. A. Averkova, “Refining the method for determining the flow rate of air entrained by freely falling polydisperse bulk material,” Powder Technol., 373, 323 – 335 (2020).

    Article  CAS  Google Scholar 

  25. V. M. Kireev, V. A. Minko, and A. B. Gol’tsov, “Recirculation in energy-efficient aspiration systems with the use of the Coandã effect,” Vestn. Belgorod. Gos. Tekhnol. Univ. im. V. Shukhova, No. 12, 57 – 62 (2018).

    Google Scholar 

  26. I. E. Idel’chik, A Handbook of Hydraulic Resistances [in Russian], 3rd edn., Mashinostroenie, Moscow (1992).

    Google Scholar 

  27. V. A. Minko, Dedusting of the Technological Processes of Production of Building Materials [in Russian], Voronezh State University, Voronezh (1981).

    Google Scholar 

  28. O. D. Neikov and I. N. Logachev, Aspiration and Dedusting of Air in the Production of Powders [in Russian], Metallurgiya, Moscow (1981).

    Google Scholar 

  29. Album of Unified and Nonstandard Equipment of Aspiration Systems for Enterprises Producing Silicate Bricks [in Russian], Belgorod Technological Institute of Building Materials, Belgorod (1989).

  30. Y. Huang, K. Lu, J. Guo, et al., “Study on ventilation performance of lateral exhaust hood under the influence of two high-temperature buoyant jets,” Build. Environ., 177, Article 106849 (2020).

    Article  Google Scholar 

  31. Y. Huang, K. Lu, Y. Wang, et al., “Study on the limit flow ratio method for a lateral exhaust hood above high-temperature buoyant jets,” Sustain. Cities Soc., 54, Article 101969 (2020).

    Article  Google Scholar 

  32. Y. Wang, L. Cao, Y. Huang, and Y. Cao, “Lateral ventilation performance for the removal of pulsating buoyant jet under the influence of high-temperature plume,” Indoor Built Environ., 29(4), 1 – 15 (2020). doi:https://doi.org/10.1177/1420326x19886639.

    Article  CAS  Google Scholar 

  33. Y. Huang, Y. Wang, L. Liu, “Performance of constant exhaust ventilation for removal of transient high-temperature contaminated airflows and ventilation-performance comparison between two local exhaust hoods,” Energ. Buildings, 154, 207 – 216 (2017).

    Article  Google Scholar 

  34. Y. Huang, Y. Wang, X. Ren, et al., “Ventilation guidelines for controlling smoke, dust, droplets, and waste heat: four representative case studies in Chinese industrial buildings,” Energ. Buildings, 128, 834 – 844 (2016).

    Article  Google Scholar 

  35. I. N. Logachev, K. I. Logachev, and O. A. Averkova, “Methods and means for reducing the power requirements of ventilation systems in the transfer of free-flowing materials,” Refract. Ind. Ceram., 54(3), 258 – 262 (2013).

    Article  Google Scholar 

  36. K. I. Logachev, I. V. Khodakov, and O. A. Averkova, “Decreasing the power consumption of ventilation shelters by the aerodynamic screening of slot leakages,” Refract. Ind. Ceram., 56(2), 204 – 209 (2015).

    Article  Google Scholar 

Download references

The present work was financially supported by the Grant of the Russian Scientific Foundation (Project No. 18-79-10025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Logachev.

Additional information

Translated from Novye Ogneupory, No. 12, pp. 61 – 68, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gol’tsov, A.B., Logachev, K.I., Ovsyannikov, Y.G. et al. Numerical Simulation of Air Flows in the Loading Chute of an Aspiration Shelter with Multistage Recirculation Air Seal. Refract Ind Ceram 61, 727–734 (2021). https://doi.org/10.1007/s11148-021-00550-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00550-3

Keywords

Navigation