Skip to main content
Log in

Deciphering the Probiotic Potential of Bacillus amyloliquefaciens COFCAU_P1 Isolated from the Intestine of Labeo rohita Through In Vitro and Genetic Assessment

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this study, a bacterial strain COFCAU_P1, isolated from the digestive tract of a freshwater teleost rohu (Labeo rohita), was identified as Bacillus amyloliquefaciens using 16S rRNA gene sequence analysis combined with amplification of species-specific BamHI and barnase genes. The probiotic potential of the strain was evaluated using an array of in vitro tests along with safety and genetic analyses. The isolate showed potent antimicrobial response against several fish pathogenic bacteria, survived a wide pH range (2–9), and was resistant up to 10% bile salt concentration. With regard to the in vitro adhesion properties, the strain showed significantly high in vitro adhesion to mucus, auto and co-aggregation capacity, and cell surface hydrophobicity. The strain was non-haemolytic, able to produce extracellular enzymes, viz., proteinase, amylase, lipase, and cellulase, and showed significant free radical scavenging activity. A challenge study in rohu revealed the strain COFCAU_P1 as non-pathogenic. The presence of putative probiotic marker genes including 2, 3-bisphosphoglycerate-independent phosphoglycerate mutase, arginine/ornithine antiporter ArcD, choloylglycine hydrolase, LuxS, and E1 β-subunit of the pyruvate dehydrogenase complex was confirmed by PCR, suggesting the molecular basis of the probiotic-specific functional attributes of the isolate. In conclusion, the in vitro and genetic approaches enabled the identification of a potential probiotic from autochthonous source with a potential of its utilization in the aquaculture industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that all data generated or analysed during this study are included in this published article.

References

  1. Austin B, Austin DA (1999) Bacterial fish pathogens- disease of farmed and wild fish. Chapter 13, Ellis Harwood Ltd., England, p 263–287. https://doi.org/10.1007/978-1-4020-6069-4

  2. Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M (2005) Disease and health management in Asian aquaculture. Vet Parasitol 132:249–272. https://doi.org/10.1016/j.vetpar.2005.07.005

    Article  PubMed  Google Scholar 

  3. Hai NV, Fotedar R, Buller N (2007) Selection of probiotics by various inhibition test methods for use in the culture of western king prawns, Penaeus latisulcatus (Kishinouye). Aquaculture 272:231–239. https://doi.org/10.1016/j.aquaculture.2007.07.223

    Article  Google Scholar 

  4. Banerjee G, Ray AK (2017) Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis 72:1–11. https://doi.org/10.1007/s13199-016-0441-8

    Article  CAS  Google Scholar 

  5. Elsabagh M, Mohamed R, Moustafa EM, Hamza A, Farrag F, Decamp O, Dawood MAO, Eltholth M (2018) Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquac Nutr 24:1–10. https://doi.org/10.1111/anu.12797

    Article  CAS  Google Scholar 

  6. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671. https://doi.org/10.1128/MMBR.64.4.655-671.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274:1–14. https://doi.org/10.1016/j.aquaculture.2007.11.019

    Article  Google Scholar 

  8. Papadimitriou K, Zoumpopoulou G, Foligne B, Alexandraki V, Kazou M, Pot B, Tsakalidou E (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 6:58. https://doi.org/10.3389/fmicb.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mukherjee A, Dutta D, Banerjee S, Ringo E, Breines EM, Hareide E, Chandra G, Ghosh K (2017) Culturable autochthonous gut bacteria in rohu, Labeo rohita. In vitro growth inhibition against pathogenic Aeromonas spp., stability in gut, bio-safety and identification by 16S rRNA gene sequencing. Symbiosis 73:165–177. https://doi.org/10.1007/s13199-017-0474-7

    Article  CAS  Google Scholar 

  10. Kar N, Ghosh K (2008) Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turkish J Fish Aquat Sci 1:115–120

    Google Scholar 

  11. Ray AK, Roy T, Mondal S, Ringo E (2010) Identification of gut associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquac Res 4:1462–1469. https://doi.org/10.1111/j.1365-2109.2009.02437.x

    Article  CAS  Google Scholar 

  12. FAO/WHO (2001) Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Report from FAO/WHO Expert Consultation, p 1–4

  13. Balcazar JL, Vendrell D, de Blas I, Ruiz-Zarzuela I, Muzquiz JL, Girones O (2008) Characterization of probiotic properties of lactic acid bacteria isolated from intestinal microbiota of fish. Aquaculture 278:188–191. https://doi.org/10.1016/j.aquaculture.2008.03.014

    Article  CAS  Google Scholar 

  14. Ray AK, Ghosh K, Ringo E (2012) Enzyme-producing bacteria isolated from fish gut: a review. Aquac Nutr 18:465–492. https://doi.org/10.1111/j.1365-2095.2012.00943.x

    Article  CAS  Google Scholar 

  15. Nandi A, Dan SK, Banerjee G, Ghosh P, Ghosh K, Ringo E, Ray AK (2017) Probiotic potential of autochthonous bacteria isolated from the gastrointestinal tract of four freshwater teleosts. Probiotics Antimicrob Proteins 9:12–21. https://doi.org/10.1007/s12602-016-9228-8

    Article  PubMed  Google Scholar 

  16. Mandal S, Ghosh K (2013) Isolation of tannase-producing microbiota from the gastrointestinal tracts of some freshwater fish. J Appl Ichthyol 29:145–153. https://doi.org/10.1111/j.1439-0426.2012.02054.x

    Article  CAS  Google Scholar 

  17. Mukherjee A, Ghosh K (2016) Antagonism against fish pathogens by cellular components and verification of probiotic properties in autochthonous bacteria isolated from the gut of an Indian major carp, Catla catla (Hamilton). Aquac Res 47:2243–2255. https://doi.org/10.1111/are.12676

    Article  Google Scholar 

  18. Spelhaug SR, Harlander S (1989) Inhibition of food-borne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceus. J Food Prot 52:856–862. https://doi.org/10.4315/0362-028X-52.12.856

    Article  PubMed  Google Scholar 

  19. Lemos ML, Toranzo AE, Barja JL (1985) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb Ecol 11:149–163. https://doi.org/10.1007/BF02010487

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura A, Takahashi KG, Mori K (1999) Vibrio static bacteria isolated from rearing seawater of oyster brood stock: potentiality as biocontrol agents for Vibriosis in oyster larvae. Fish Pathol 34:139–144. https://doi.org/10.3147/jsfp.34.139

    Article  Google Scholar 

  21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  23. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  24. Hoque F (2015) Screening and characterisation of antagonistic Pseudomonas aeruginosa FARP72 as a potential probiotic agent. Indian J Fish 62:80–90

    Google Scholar 

  25. Nikoskelainen S, Salminen S, Bylund G, Ouwehand A (2001) Characterization of the properties of human and dairy-derived probiotics for prevention of infectious diseases in fish. Appl Environ Microbiol 67:2430–2435. https://doi.org/10.1128/AEM.67.6.2430-2435.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joseph SW, Colwell RR, Kaper JB (1982) Vibrio parahaemolyticus and related hallophilic vibrios. Crit Rev Microbiol 10:73–124. https://doi.org/10.3109/10408418209113506

    Article  Google Scholar 

  27. Jacob MB, Gerstein MJ (1960). Handbook of Microbiology. D. Van Nostrand Co. Inc., New York, p 139–202. /https://doi.org/10.1002/jps.2600500123

  28. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780. https://doi.org/10.1128/AEM.43.4.777-780.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee S, Lee J, Jin YI, Jeong JC, Chang YH, Lee Y, Jeong Y, Kim M (2017) Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT-Food Sci Technol 79:518–524. https://doi.org/10.1016/j.lwt.2016.08.040

    Article  CAS  Google Scholar 

  30. Midhun SJ, Neethu S, Vysakh A, Sunil MA, Radhakrishnan EK, Jyothis M (2017) Antibacterial activity of autochthonous bacteria isolated from Anabas testudineus (Bloch, 1792) and it’s in vitro probiotic characterization. Microb Pathog 113:312–320. https://doi.org/10.1016/j.micpath.2017.10.058

    Article  CAS  PubMed  Google Scholar 

  31. Devi AA, Kamilya D (2019) Efficacy and effects of clove oil and MS-222 on the immune-biochemical responses of juvenile rohu Labeo rohita. Aquac Res 50:957–963. https://doi.org/10.1111/are.13980

    Article  CAS  Google Scholar 

  32. Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x

    Article  PubMed  Google Scholar 

  33. Handley PS, Harty DW, Wyatt JE, Brown CR, Doran JP, Gibbs AC (1987) A comparison of the adhesion, coaggregation and cell-surface hydrophobicity properties of fibrillar and fimbriate strains of Streptococcus salivarius. J Gen Microbiol 133:3207–3217. https://doi.org/10.1099/00221287-133-11-3207

    Article  CAS  PubMed  Google Scholar 

  34. Xing J, Wang G, Zhang Q, Liu X, Gu Z, Zhang H, Chen YQ, Chen W (2015) Determining antioxidant activities of Lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS One 10:e0119058. https://doi.org/10.1371/journal.pone.0119058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brand W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebenson Wiss Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  36. Ruch RJ, Cheng SJ, Klaunig JE (1989) Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10:1003–1008. https://doi.org/10.1093/carcin/10.6.1003

    Article  CAS  PubMed  Google Scholar 

  37. Han Q, Kong B, Chen Q, Sun F, Zhang H (2017) In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. J Funct Foods 32:391–400. https://doi.org/10.1016/j.jff.2017.03.020

    Article  CAS  Google Scholar 

  38. Das A, Nakhro K, Chowdhury S, Kamilya K (2013) Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish Shellfish Immunol 35:1547–1553. https://doi.org/10.1016/j.fsi.2013.08.022

    Article  CAS  PubMed  Google Scholar 

  39. Kapsea NG, Engineera AS, Gowdamana V, Waghb S, Dhakephalkara PK (2019) Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243. Genomics 111:921–929. https://doi.org/10.1016/j.ygeno.2018.05.022

    Article  CAS  Google Scholar 

  40. Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30:404–427. https://doi.org/10.1111/j.1574-6976.2006.00017.x

    Article  CAS  PubMed  Google Scholar 

  41. Hartley RW, Barker EA (1972) Amino-acid sequence of extracellular ribonuclease (barnase) of Bacillus amyloliquefaciens. Nature New Biol 235:15–16. https://doi.org/10.1038/newbio235015a0

    Article  CAS  PubMed  Google Scholar 

  42. Roberts R, Wilson G, Young F (1977) Recognition sequence of specific endonuclease BamHI from Bacillus amyloliquefaciens H. Nature 265:82–84. https://doi.org/10.1038/265082a0

    Article  CAS  PubMed  Google Scholar 

  43. Cartman ST, La Ragione RM, Woodward MJ (2008) Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl Environ Microb 74:5254–5258. https://doi.org/10.1128/AEM.00580-08

    Article  CAS  Google Scholar 

  44. Ramesh D, Vinothkanna A, Rai AK, Vignesh VS (2015) Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila. Fish Shellfish Immunol 45:268–276. https://doi.org/10.1016/j.fsi.2015.04.018

    Article  CAS  PubMed  Google Scholar 

  45. FAO (2020). Aquaculture Feed and Fertilizer Resources Information System. Retrieved from http://www.fao.org/fishery/affris/species-profiles/roho-labeo/rohu-home/en/. Accessed Feb 2020

  46. De Smet I, Hoorde LV, Woestyne MV, Christiaens H, Verstraete W (1995) Significance of bile salt hydrolytic activities of lactobacilli. J Appl Bacteriol 79:292–301. https://doi.org/10.1111/j.1365-2672.1995.tb03140.x

    Article  PubMed  Google Scholar 

  47. Giri SS, Sen SS, Sukumaran V (2012) Effects of dietary supplementation of potential probiotic Pseudomonas aeruginosa VSG-2 on the innate immunity and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 32:1135–1140. https://doi.org/10.1016/j.fsi.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  48. Kavitha M, Raja M, Perumal P (2018) Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquac Rep 11:59–69. https://doi.org/10.1016/j.aqrep.2018.07.001

    Article  Google Scholar 

  49. Kuebutornye FK, Lu Y, Abarike ED, Wang Z, Li Y, Sakyi ME (2019) In vitro assessment of the probiotic characteristics of three Bacillus species from the gut of Nile tilapia, Oreochromis niloticus. Probiotics Antimicrob Proteins 17:1–13. https://doi.org/10.1007/s12602-019-09562-5

    Article  CAS  Google Scholar 

  50. Tuomola E, Crittenden R, Playne M, Isolauri E, Salminen S (2001) Quality assurance criteria for probiotic bacteria. J Clin Nutr 73:393S-398S. https://doi.org/10.1093/ajcn/73.2.393s

    Article  CAS  Google Scholar 

  51. Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987. https://doi.org/10.1046/j.1365-2672.2003.01915.x

    Article  CAS  PubMed  Google Scholar 

  52. Guo XH, Kim JM, Nam HM, Park SY, Kim JM (2010) Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe 16:321–326. https://doi.org/10.1016/j.anaerobe.2010.03.006

    Article  PubMed  Google Scholar 

  53. Balakrishna A, Kumar NA (2012) Preliminary studies on siderophore production and probiotic effect of bacteria associated with the Guppy, Poecilia reticulata Peters, 1859. Asian Fish Sci 25:193–205. https://doi.org/10.33997/j.afs.2012.25.2.008

  54. Servin AL, Coconnier MH (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754. https://doi.org/10.1016/S1521-6918(03)00052-0

    Article  CAS  PubMed  Google Scholar 

  55. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A, Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii LaI to human enterocyte-like Caco-2 cells. Appl Environ Microbiol 65:1071–1077. https://doi.org/10.1128/AEM.65.3.1071-1077.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rojas M, Ascencio F, Conway PL (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68:2330–2336. https://doi.org/10.1128/aem.68.5.2330-2336.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073. https://doi.org/10.1007/s00217-007-0632-x

    Article  CAS  Google Scholar 

  58. Manhar AK, Saikia D, Bashir Y, Mech RK, Nath D, Konwar BK, Mandal M (2015) In vitro evaluation of cellulolytic Bacillus amyloliquefaciens AMS1 isolated from traditional fermented soybean (Churpi) as an animal probiotic. Res Vet Sci 99:149–156. https://doi.org/10.1016/j.rvsc.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  59. Spencer RJ, Chesson A (1994) The effect of Lactobacillus spp. on the attachment of enterotoxigenic Escherichia coli to isolated porcine enterocytes. J Appl Bacteriol 77:215–220. https://doi.org/10.1111/j.1365-2672.1994.tb03066.x

    Article  CAS  PubMed  Google Scholar 

  60. Boris S, Suarez JE, Barbes C (1997) Characterization of the aggregation promoting factor from Lactobacillus gasseria vaginal isolate. J Appl Microbiol 83:413–420. https://doi.org/10.1046/j.1365-2672.1997.00250.x

    Article  CAS  PubMed  Google Scholar 

  61. Bellon-Fontaine MN, Rault J, Van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/ electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf B Biointerfaces 7:47–53. https://doi.org/10.1016/0927-7765(96)01272-6

    Article  CAS  Google Scholar 

  62. Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agri Food Chem 47:1460–1466. https://doi.org/10.1021/jf981149l

    Article  CAS  Google Scholar 

  63. Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W (2017) Antioxidant properties of probiotic bacteria. Nutrients 9:521. https://doi.org/10.3390/nu9050521

    Article  CAS  PubMed Central  Google Scholar 

  64. Li Y, Hugenholtz J, Abee T, Molenaar D (2003) Glutathione Protects Lactococcus lactis against oxidative stress. Appl Environ Microbiol 69:5739–5745. https://doi.org/10.1128/AEM.69.10.5739-5745.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pieniz S, Andreazza R, Anghinoni T, Camargo F, Brandelli A (2014) Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control 37:251–256. https://doi.org/10.1016/j.foodcont.2013.09.055

    Article  CAS  Google Scholar 

  66. Giri SS, Jun JW, Yun S, Kim HJ, Kim SG, Kang JW, Kim SW, Han SJ, Park SC, Sukumaran V (2019) Characterisation of lactic acid bacteria isolated from the gut of Cyprinus carpio that may be effective against lead toxicity. Probiotics Antimicrob Proteins 11:65–73. https://doi.org/10.1007/s12602-017-9367-6

    Article  CAS  PubMed  Google Scholar 

  67. Turpin W, Humblot C, Guyot JP (2011) Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Appl Environ Microbiol 77:8722–8734. https://doi.org/10.1128/AEM.05988-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oliveira LC, Saraiva TD, Silva Pereira UP, Campos BC, Benevides LJ, Rocha FS, Figueiredo HC, Azevedo V, Soares SC (2017) Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS One 12:e0175116. https://doi.org/10.1371/journal.pone.0175116

  69. Jia FF, Zheng, HQ, Sun SR, Pang XH, Liang Y, Shang JC, Zhu ZT, Meng XC (2018) Role of luxS in stress tolerance and adhesion ability in Lactobacillus plantarum KLDS1.0391. Biomed Res Int 2018:4506829. https://doi.org/10.1155/2018/4506829

  70. Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB, Pfeiler EA, O’Flaherty S, Buck BL, Dobson A, Duong MMJ (2008) Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74:4610–4625. https://doi.org/10.1128/AEM.00054-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The study was financially supported by a research grant from Department of Biotechnology, New Delhi, India [BT/PR25008/NER/95/953/2017]. The authors thank Dr. Janmejay Parhi, Mr. Shongsir Joy Monsang, and Ms. Mithila Debbarma for their technical advice and help. First author would also like to thank University Grant Commission, New Delhi, India for financial assistance [F.No.61-1/2019 (SA-III)] during the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Gon Choudhury.

Ethics declarations

Ethical Statement

All experimental procedures involving fish were performed in accordance with the guidelines and policies of the ethical committee of the institute (No. CAU-CF/48/IAEC/2018/09 dated 06/01/2020).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.R., Kamilya, D., Choudhury, T.G. et al. Deciphering the Probiotic Potential of Bacillus amyloliquefaciens COFCAU_P1 Isolated from the Intestine of Labeo rohita Through In Vitro and Genetic Assessment. Probiotics & Antimicro. Prot. 13, 1572–1584 (2021). https://doi.org/10.1007/s12602-021-09788-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09788-2

Keywords

Navigation