Skip to main content
Log in

The Age and Petrogenesis of Felsic Volcanics of the Algan Mountains, Koryak Highland, Northeast Russia

  • Published:
Russian Journal of Pacific Geology Aims and scope Submit manuscript

Abstract

U–Pb zircon dating of felsic volcanic rocks from the Konachan Complex (Algan Mountains, northwestern Koryak Highland) confirmed their Late Miocene age (34.6 ± 0.5–38.8 ± 0.4 Ma, Priabonian). It is shown that these rocks are represented by moderate-potassium peraluminous (ASI = 1.23–1.30), moderate- and high-Mg varieties, frequently with high Cr and Ni contents. The Sr, Y, and Yb contents are similar to those of adakites. The high 143Nd/144Nd and low 87Sr/86Sr ratios in the rocks of the complex in combination with their trace and rare-earth distribution patterns suggest that metabasites weakly contaminated by sedimentary material were one source of silicic melt. The magmatic rocks of the Konachan Complex were formed during accretion of the terranes of the Olyutorka–Eastern Kamchatka island-arc system; the compression locked the upwelling front of continental asthenosphere, thus initiating crustal anatexis and silicic magmatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. Nb/Nb* expresses the value of the Nb anomaly in the primitive mantle-normalized trace element pattern. Nb is the measured element content in the rock, while Nb* is a theoretical content interpolated between neighboring elements. Nb/Nb* = Nbn/[(Thn)*(Lan)]1/2. Other anomalies, including Zr/Zr*, Sr/Sr*, etc. are calculated by the similar manner.

REFERENCES

  1. V. V. Akinin, A. V. Andronikov, S. B. Mukasa, and E. L. Miller, “Cretaceous lower crust of the continental margins of the Northern Pacific: petrological and geochronological data on Lower to Middle Crustal Xenoliths,” Petrology 21 (1), 28–65 (2013).

  2. S. D. Velikoslavinskii, “Geochemical classification of silicic igneous rocks of major geodynamic environments,” Petrology 11 (4), 327–342 (2003).

  3. B. V. Vyatkin, State Geological Map of the Russian Federation. 1 : 200 000. Anadyr Series. Sheet Q-59-XXXV, XXXVI. Irvynei Mounains. Explanatory Notes (Soyuz geolfond, Moscow, 1990) [in Russian].

  4. Geological Map of the Chukotka Autonomous District. 1 : 500 000, Ed. by V. A. Varlamova, G. M. Malysheva, B. V. Vyatkin, and T. V. Zvizda (Georegion, Anadyr’, 2004) [in Russian].

  5. I. V. Gul’pa, State Geological Map of the Russian Federation. 1 : 200 000 (2 nd Generation). Koryak Series. Sheet Q-59-XXIX, XXX. Otrozhnyi: Explanatory Notes (Kartograf. fabrika VSEGEI, St. Petersburg, 2014) [in Russian].

  6. V. A. Zakharov, State Geological Map of the Russian Federation. 1 : 200 000. Anadyr Ser. Sheet Q-59-XXIX: Explanatory Notes (Soyuzgeolfond, Moscow, 1980) [in Russian].

  7. V. P. Zinkevich, Formations and Stages of the Tectonic Evolution of the Nortehrn Koryak Highland (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  8. L. P. Zonenshain, M. I. Kuz’min, and L. M. Natapov, Tectonics of Lithospheric Plates of the USSR (Nedra, Moscow, 1990), Vol. 2 [in Russian].

    Google Scholar 

  9. A. V. Koloskov, D. V. Kovalenko, and V. V. Anan’ev, “Adakite volcanism at continental margin and associated problems. Part II. Adakites from the Sea of Okhotsk, Kamchatka, and Bering Sea regions: typification and genesis,” Russ. J. Pac. Geol. 38 (5), 417–435 (2019).

  10. G. M. Malysheva, E. P. Isaeva, Yu. B. Tikhomirov, and B. V. Vyatkin, Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. 1 : 1 000 000 (3 rd Generation). Chukotka Ser. Sheet Q-59. Markovo: Explanatory Note (Kartograf. fabrika VSEGEI, St. Petersburg, 2012) [in Russian].

  11. A. V. Moiseev, M. V. Luchitskaya, I. V. Gul’pa, V. B. Khubanov, B. V. Belyatskii, " Vendian and Permian–Triassic plagiogranite magmatism of the Ust-Belaya Mountains, West Koryak Fold System, northeastern Russia," Geotectonics, 53 (1), 84–109 (2019).

  12. S. A. Palandzhyan, “The Ust-Belaya ophiolite terrane, West Koryak Orogen: isotopic dating and paleotectonic interpretation,” Geotectonics, 49 (2), 135–149 (2015).

  13. L. M. Parfenov, L. M. Natapov, S. D. Sokolov, and N. V. Tsukanov, “Terranes and accretionary tectonics of Norteast Asia,” Geotektonika, No. 1, 68–78 (1993).

    Google Scholar 

  14. V. F. Polin, V. G. Sakhno, S. O. Maksimov, and I. V. Sandimirov, “Isotope geochemistry and deep sources of sualkaline and alkaline rocks from the Paleogene contrasting series of the Amguema–Kanchalan volcanic field, Okhotsk–Chukotka volcanic belt,” Dokl. Earth Sci. 429 (1), 1288–1294 (2009).

  15. V. N. Smirnov, P. I. Fedorov, and E. S. Bogomolov, “New data on the age and composition of Cenozoic andesibasalts and andesites of the Bolshaya Garmanda River (North Okhotsk Region),” Russ. J. Pac. Geol. 37 (6), 511–520 (2018).

  16. Sokolov, S.D., Accretionary Tectonics of the Koryak–Kamchatka Segment of the Pacific Belt (Nauka, Moscow, 1992).

    Google Scholar 

  17. S. D. Sokolov and S. G. Byalobzheskii, “Terranes of the Koryak Highland, Northeastern Russia,” Geotectonics, 30 (6), 486–497 (1996).

  18. S. D. Sokolov, “Tectonics of Northeast Asia: an overview,” Geotectonics 44 (6), 493–509 (2010).

  19. P. I. Fedorov, N. I. Filatova, and A. I. Dvoryankin, “Cenozoic volcanism of the eastern Koryak highland (Northeastern Russia) and geodynamic setting of its manifestation,” Tikhookean. Geol., No. 3, 3–13 (1996).

  20. P. I. Fedorov and N. I. Filatova, “Geochemistry and petrology of Late Cretaceous and Cenozoic basalts from extensional zones at the continental margin of northeastern Asia,” Geochem. Int. 37 (2), 91–107 (1999).

  21. P. I. Fedorov, Cenozoic Volcanism in the Extensional zones on the Northeastern Asian Margin (GEOS, Moscow, 2006) [in Russian].

    Google Scholar 

  22. P. I. Fedorov, D. V. Kovalenko, and O. A. Ageeva, “Western Kamchatka–Koryak continental-margin volcanogenic belt: age, composition, and sources,” Geochem. Int., 49 (8), 768–792 (2011).

  23. P. I. Fedorov and V. N. Smirnov, “Early Cenozoic volcanism of the Kolyuchin–Mechigmen Graben, Chukotka Peninsula,” Petrology 22 (1), 54–64 (2014).

  24. N. I. Filatova, Perioceanic Volcanogenic Belts (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  25. N. I. Filatova, “Transform margin Maastrichtian–Paleogene magmatism in East Asia: the problem of “belts” in the Koryak–Western Kamchatka region," Petrology 23 (4), 331–352 (2015).

  26. A. I. Khanchuk and V. V. Ivanov, “Mesocenozoic geodynamic settings and gold mineralization of the Russian Far East,” Geol. Geofiz. 40 (11), 1635–1645 (1999).

  27. V. D. Chekhovich, A. N. Sukhov, M. V. Kononov, and S. A. Palandzhyan, “Geodynamics of the northwestern sector of the Pacific Mobile Belt in the Late Cretaceous–Early Paleogene,” Geotectonics, 43 (4), 283–304 (2009).

  28. M. N. Shapiro and A. V. Solov’ev, “Cenozoic volcanic rocks of North Kamchatka: in search of subduction zones,” Geotectonics, 45 3, 210–224 (2011).

  29. V. I. Shkurskii, G. N. Startsev, and S. A. Malikova, Report on the Work of the Pravyi Algan Prospecting Team on a Scale 1 : 50 000 in 1962 (Chukotskii TGF, 1963) [in Russian].

  30. J. G. Brophy, “A study of rare earth element (REE) – SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes,” Contrib. Mineral. Petrol. 156, 337–357 (2008).

  31. K. C. Condie, “Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales,” Chem. Geol. 104, 1–37 (1993).

  32. D. J. De Paolo, Neodymium Isotope Geochemistry: An Introduction (Springer-Verlag, New York, 1988).

    Book  Google Scholar 

  33. D. J. De Paolo, A. M. Linn, and G. Schubert, “The continental crustal age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and application to the Southwestern United States,” J. Geophys. Res. 96, 2071–2088 (1991).

  34. G. N. Eby, “Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications,” Geology 20, 641–644 (1992).

  35. N. M. Evensen, P. J. Hamilion, and R. K. O’Nions, “Rare earth abundances in chondritic meteorites,” Geochim. Cosmochim. Acta 42, 1199–1212 (1978).

  36. N. N. Fedyunina, I. F. Seregina, M. A. Bolshov, O. I. Okina, and S. M. Lyapunov, “Investigation of the efficiency of the sample pretreatment stage for the determination of the rare earth elements in rock samples by inductively coupled plasma mass spectrometry technique,” Analytica Chim. Acta 713, 97–102 (2012).

  37. B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A geochemical classification for granitic rocks,” J. Petrol. 42, 2033–2048 (2001).

  38. T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification on the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).

  39. S. R. Hart, “Heterogeneous mantle domains: signatures, genesis and mixing chronologies,” Earth Planet. Sci. Lett. 90, 273–296 (1988).

  40. M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. A. Zanettin, “Chemical classification of volcanic rocks based on the total alkali–silica diagram,” J. Petrol. 27, 745–750 (1986).

  41. J. Maeda, “Opening of the kuril basin deduced from the magmatic history of Central Hokkaido, North Japan,” Tectonophysics 174, 235–255 (1990).

    Google Scholar 

  42. P. D. Maniar and P. M. Piccoli, “Tectonic discrimination of granitoids,” Geol. Soc. Am. Bull. 101, 635–643 (1989).

  43. A. Miyashiro, “Volcanic rock series in island arc and active continental margins,” Am. J. Sci. 274 (4), 321–355 (1974).

  44. W. J. Nokleberg, L. M. Parfenov, J. W. H. Monger, et al., Circum-North Pacific tectonostratigraphic terrane map,” U.S. Geol. Surv. Open-File Report, No. 94-714 (1994).

    Book  Google Scholar 

  45. A. Douce, E. Patino, and A. D. Johnston, “Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites,” Contrib. Mineral. Petrol. 107, 202–218 (1991).

  46. J. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element distribution diagrams for the tectonic interpretaton of granitic rock,” J. Petrol. 25, 956–983 (1984).

  47. J. Pearce, “Sources and settings of granitic rocks,” Episodes 19, 120–125 (1996).

  48. A. Peccerillo and S. R. Taylor, “Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, norhern Turkey,” Contrib. Mineral. Petrol. 58, 63–81 (1976).

  49. R. Rudnick and S. Gao, Treatise on Geochemistry. Volume 3. Composition of the Continental Crust, Ed. by H. D. Holland and K. K. Turekian (Elsevier-Pergamon, Oxford, 2003).

  50. S. D. Sokolov and M. I. Tuchkova, Mesozoic tectono-stratigraphic terranes of the Koryak-Chukotka region, Late Jurassic Margin of Laurasia – a Record of Faulting Accommodating Plate Rotation, Ed. by T. H. Anderson, A. N. Didenko, C. L. Johnson, A. I. Khanchuk, J. F. MacDonald, Jr., Geol. Soc. Amer. Spec. Paper 513, 461–481 (2015). P.

  51. P. J. Sylvester, Post-collisional strongly peraluminous granites, Lithos 45, 29—44 (1998).

  52. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts,” Magmatism in Ocean Basin, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Am, Spec. Pap. 513, 461–481 (2015).

  53. J. B. Whalen, K. L. Currie, and B. W. Chappel, “A-type granites: geochemical characteristics and petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).

  54. I. S. Whilliams, “U-Th-Pb geochronology by ion microprobe,” Rev. Econ. Geol 7, 1–35 (1998).

    Google Scholar 

  55. G. M. Yogodziski, J. M. Lees, T. G. Churikova, et al., “Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges,” Nature 409, 500–504 (2001).

Download references

ACKNOWLEDGMENTS

We are grateful to V.V. Lebedev, A.D. Kievskii, and S.V. Aksenov (JSC Georegion, Anadyr) for their help in the performance of field works. A.R. Geptner (GIN RAS) is thanked for valuable consultation during the petrographic studies.

Funding

The work was made in the framework of the State Tasks of the Geological Institute (project no. 0135-2019-0038) and the Institute of Precambrian Geology and Geochronology (project no. 0153-2019-0002) of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Fedorov.

Additional information

Recommended for publishing by Yu.A. Martynov

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, P.I., Moiseev, A.V., Palandzhyan, S.A. et al. The Age and Petrogenesis of Felsic Volcanics of the Algan Mountains, Koryak Highland, Northeast Russia. Russ. J. of Pac. Geol. 15, 85–101 (2021). https://doi.org/10.1134/S1819714021020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819714021020032

Keywords:

Navigation