Skip to main content
Log in

Dissolution of Magnetite in Orthophosphoric Acid: Study and Modeling

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The influence of a number of parameters (temperature, pH, the concentrations of orthophosphoric acid and ions in the electrolyte) on the kinetic laws of the dissolution of magnetite Fe3O4 in acidic solutions is studied. The nature of the potential-determining reaction in magnetite electrode–electrolyte solution systems is determined. The experimental results prove that the dissolution of oxide phases can be stimulated by iron, which affects the potential at the iron oxide/electrolyte solution interface. The reaction orders of the magnetite dissolution processes with respect to hydrogen cations, Fe(II) and Fe(III) ions, dihydrophosphate anions, and H3PO4 are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. A. Blesa, P. J. Morando, and A. E. Regazzoni, Chemical Dissolution of Metal Oxides (CRC Press, Boca Raton, 1994).

    Google Scholar 

  2. A. Fedorockova and P. Raschman, “Kinetics of chemical dissolution of oxides: comparison of theory and experiment,” Chem. Listy 100, 337–347 (2006).

    CAS  Google Scholar 

  3. Surface and Near-Surface Chemistry of Oxide Materials, Ed. by J. Nowotny and L. C. Dufour (Elsevier, Amsterdam, 1988).

    Google Scholar 

  4. I. G. Gorichev, A. M. Kutepov, A. I. Gorichev, A. D. Izotov, and B. E. Zaitsev, Kinetics and Mechanism of the Dissolution of Iron Oxides and Hydroxides in Acidic Media (Ros. Univ. Druzhby Narodov, Moscow, 1999).

    Google Scholar 

  5. I. G. Gorichev and N. A. Kipriyanov, “Kinetics of the dissolution of oxide phases in acids,” Zh. Fiz. Khim. 55 (11), 2734–2751 (1981).

    CAS  Google Scholar 

  6. I. G. Gorichev and N. A. Kipriyanov, “Kinetic regularities of the dissolution of metal oxides in acidic media,” Usp. Khim. 53 (11), 1790–1826 (1984).

    Article  CAS  Google Scholar 

  7. I. G. Gorichev, “Kinetics and mechanisms of the dissolution of 3d-metal oxides in acidic media,” Extended Abstract of Doct. Sci. (Chem.) Dissertation (Moscow, 2000). https://www.elibrary.ru/item.asp?id=19161824.

  8. A. V. Kuzin, I. G. Gorichev, and Yu. A. Lainer, “Stimulating effect of phosphate ions on the dissolution kinetics of iron oxides in an acidic medium,” Russ. Metall. (Metally), No. 9, 652–657 (2013).

  9. A. V. Kuzin, I. G. Gorichev, E. A. Eliseeva, and L. E. Slynko, “The effect of stoichiometry of iron(II) and (III) and magnetite oxides on the kinetic regularities of their dissolution in orthophosphoric acid containing Fe(II) and Fe(III) ions,” Vestn. Mosk. Gos. Tekhn. Univ., Ser. Estestv. Nauki, No. 2 (83), 104–113 (2019). https://www.elibrary.ru/title_about_new. asp?id=7689.

  10. E. A. Eliseeva, L. E. Slyn’ko, O. N. Plakhotnaya, A. V. Kuzin, I. G. Gorichev, and T. K. Atanasyan, “Kinetics of the dissolution of cobalt (Co3O4) and iron (Fe3O4) oxides in sulfuric acid,” Usp. Sovr. Estestvozn., No. 8, 19–23 (2017).

  11. O. N. Plakhotnaya, I. V. Skvortsova, A. A. Zhukova, E. A. Eliseeva, I. G. Gorichev, A. N. Kuz’menko, I. I. Krasnyuk, Jr., S. R. Naryshkin, and E. V. Mazyarkin, “Simulation of the dissolution of chromium(III) oxide and copper oxide in acidic media,” Vestn. Mosk. Univ., Ser. 2: Khim. 61 (1), 11–18 (2020).

    Google Scholar 

  12. E. A. Eliseeva, O. N. Plakhotnaya, I. G. Gorichev, T. K. Atanasyan, and L. E. Slyn’ko, “Kinetics of the dissolution of cobalt and copper oxides in acidic media containing EDTA,” Vestn. Mosk. Gos. Tekhn. Univ., Ser. Estestv. Nauki, No. 1 (76), 115–124 (2018).

    Google Scholar 

  13. Z. Marchenko, Photometric Determination of Elements (Mir, Moscow, 2007).

  14. B. Delmon, Introduction a la Cinétique Hétérogéné (Technip, Paris, 1969).

    Google Scholar 

  15. A. Ya. Rozovskii, Heterogeneous Chemical Reactions (Nauka, Moscow, 1980).

    Google Scholar 

  16. V. A. Zakharov, O. A. Songina, and G. B. Berkutova, “Real potentials of redox systems,” Zh. Anal. Khim. 31 (11), 2212–2221 (1976).

    CAS  Google Scholar 

  17. Ya. G. Avdeev and T. E. Andreeva, “Potentiometric study of the H2SO4–H3PO4–H2O system containing Fe(III) and Fe(II) ions,” Usp. Khim. Khim. Tekhnol. 32 (13(209)), 63–65 (2018).

    Google Scholar 

  18. Ya. G. Avdeev, T. E. Andreeva, A. V. Panova, and Yu. I. Kuznetsov, “Effect of anionic composition of solutions of mineral acids containing Fe(III) on their oxidizing properties,” Int. J. Corros. Scale Inhib. 8 (1), 139–149 (2019).

    CAS  Google Scholar 

  19. Ya. G. Avdeev, A. V. Panova, T. E. Andreeva, and Yu. I. Kuznetsov, “Influence of Fe(III) salts on steel protection in solutions of mineral acids by corrosion inhibitors,” Korros. Mater. Zashchita, No. 11, 32–40 (2019).

    Google Scholar 

  20. Ya. G. Avdeev, T. E. Andreeva, A. V. Panova, and Yu. I. Kuznetsov, “Cyclic voltammetric study of the HCl–H3PO4–H2O–Fe(III) system,” Intern. J. Corros. Scale Inhib. 9 (2), 538–549 (2020).

    CAS  Google Scholar 

  21. Ya. G. Avdeev, T. E. Andreeva, and A. V. Panova, “Effect of urotropine on the potential of the Fe(III)/Fe(II) redox couple in mineral acid solutions,” Intern. J. Corros. Scale Inhib. 9 (2), 571–583 (2020).

    CAS  Google Scholar 

  22. L. Ciavatta, “Equilibrium studies on the complexation of cations with phosphate ions,” Recent Res. Dev. Inorg. Organometall. Chem., No. 1, 83–98 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuzin.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzin, A.V., Gorichev, I.G., Shelontsev, V.A. et al. Dissolution of Magnetite in Orthophosphoric Acid: Study and Modeling. Russ. Metall. 2021, 260–266 (2021). https://doi.org/10.1134/S0036029521030083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521030083

Keywords:

Navigation