Skip to main content
Log in

Digital imaging for reading of direct rapid antibiotic susceptibility tests from positive blood cultures

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Delaying effective antibiotic therapy is a major cause of sepsis-associated mortality. The EUCAST rapid antibiotic susceptibility test (RAST) is performed from positive blood cultures to provide rapid results. Disc diffusion tests inoculated with positive blood culture broth are read at 4, 6, and 8 h and interpreted against species and time-specific criteria. Potential problems are the possibility of missing specific reading times for tests and slower growth in incubators that are frequently opened. The current study aimed to assess if digital visualization by the BD Kiestra™ total laboratory automation system is suitable for reading RASTs by capturing images at the correct times and retaining them for review. Utilizing the Kiestra™ InoqulA, 100 μl of positive blood culture broth was lawn-inoculated onto Mueller-Hinton agar and incubated at 35 °C for automated digital zone measurement at 4, 6, and 8 h. Aliquots from 135 positive blood cultures were tested against EUCAST-recommended and other drugs and assessed for readability of digital images. Microdilution MICs were determined in parallel to RASTs. All isolates except 7/10 enterococci yielded images of suitable quality for zone measurement. Of the 641 digitally read tests for other organisms, 207 (32.3%) were readable in 4 h, 555 (86.6%) in 6 h, and 641 (100%) in 8 h. For tests included in EUCAST criteria, 92.1% provided categorical agreement with microdilution MICs. Digital image reading of RASTs is a potentially viable, inexpensive tool for providing rapid susceptibility results which can help reduce sepsis-associated mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S (2017) Recognizing sepsis as a global health priority - a WHO resolution. N Engl J Med 377(5):414–417. https://doi.org/10.1056/NEJMp1707170

    Article  PubMed  Google Scholar 

  2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, Kadri SS, Angus DC, Danner RL, Fiore AE, Jernigan JA, Martin GS, Septimus E, Warren DK, Karcz A, Chan C, Menchaca JT, Wang R, Gruber S, Klompas M, Program CDCPE (2017) Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA 318(13):1241–1249. https://doi.org/10.1001/jama.2017.13836

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dantes RB, Epstein L (2018) Combatting sepsis: a public health perspective. Clin Infect Dis 67(8):1300–1302. https://doi.org/10.1093/cid/ciy342

    Article  PubMed  Google Scholar 

  5. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, Fleischmann-Struzek C, Machado FR, Reinhart KK, Rowan K, Seymour CW, Watson RS, West TE, Marinho F, Hay SI, Lozano R, Lopez AD, Angus DC, Murray CJL, Naghavi M (2020) Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 395(10219):200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Evans IVR, Phillips GS, Alpern ER, Angus DC, Friedrich ME, Kissoon N, Lemeshow S, Levy MM, Parker MM, Terry KM, Watson RS, Weiss SL, Zimmerman J, Seymour CW (2018) Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA 320(4):358–367. https://doi.org/10.1001/jama.2018.9071

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med 45(3):486–552. https://doi.org/10.1097/CCM.0000000000002255

    Article  PubMed  Google Scholar 

  8. Weinberger J, Rhee C, Klompas M (2020) A critical analysis of the literature on time-to-antibiotics in suspected sepsis. J Infect Dis 222(Supplement_2):S110–S1S8. https://doi.org/10.1093/infdis/jiaa146

    Article  CAS  PubMed  Google Scholar 

  9. Minejima E, Mai N, Bui N, Mert M, Mack WJ, She RC, Nieberg P, Spellberg B, Wong-Beringer A (2020) Defining the breakpoint duration of Staphylococcus aureus bacteremia predictive of poor outcomes. Clin Infect Dis 70(4):566–573. https://doi.org/10.1093/cid/ciz257

    Article  PubMed  Google Scholar 

  10. Martinez-Nadal G, Puerta-Alcalde P, Gudiol C, Cardozo C, Albasanz-Puig A, Marco F, Laporte-Amargos J, Moreno-Garcia E, Domingo-Domenech E, Chumbita M, Martinez JA, Soriano A, Carratala J, Garcia-Vidal C (2020) Inappropriate empirical antibiotic treatment in high-risk neutropenic patients with bacteremia in the era of multidrug resistance. Clin Infect Dis 70(6):1068–1074. https://doi.org/10.1093/cid/ciz319

    Article  PubMed  Google Scholar 

  11. Spanik S, Kukuckova E, Pichna P, Grausova S, Krupova I, Rusnakova V, Kralovicova K, Krchnakova A, Mrazova M, Lacka J, Koren P, Stopkova K, Nogova J, Demitrovicova A, Helpianska L, Krcmery V Jr (1997) Analysis of 553 episodes of monomicrobial bacteraemia in cancer patients: any association between risk factors and outcome to particular pathogen? Support Care Cancer 5(4):330–333. https://doi.org/10.1007/s005200050083

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez-Bano J, Perez-Moreno MA, Penalva G, Garnacho-Montero J, Pinto C, Salcedo I, Fernandez-Urrusuno R, Neth O, Gil-Navarro MV, Perez-Milena A, Sierra R, Estella A, Lupion C, Irastorza A, Marquez JL, Pascual A, Rojo-Martin MD, Perez-Lozano MJ, Valencia-Martin R, Cisneros JM, Group PP (2020) Outcomes of the PIRASOA programme, an antimicrobial stewardship programme implemented in hospitals of the Public Health System of Andalusia, Spain: an ecologic study of time-trend analysis. Clin Microbiol Infect 26(3):358–365. https://doi.org/10.1016/j.cmi.2019.07.009

    Article  CAS  PubMed  Google Scholar 

  13. Eubank TA, Long SW, Perez KK (2020) Role of rapid diagnostics in diagnosis and management of patients with sepsis. J Infect Dis 222(Supplement_2):S103–S1S9. https://doi.org/10.1093/infdis/jiaa263

    Article  CAS  PubMed  Google Scholar 

  14. Mangioni D, Peri AM, Rossolini GM, Viaggi B, Perno CF, Gori A, Bandera A (2020) Toward rapid sepsis diagnosis and patient stratification: what’s new from microbiology and omics science. J Infect Dis 221(7):1039–1047. https://doi.org/10.1093/infdis/jiz585

    Article  CAS  PubMed  Google Scholar 

  15. Grumaz C, Hoffmann A, Vainshtein Y, Kopp M, Grumaz S, Stevens P, Decker SO, Weigand MA, Hofer S, Brenner T, Sohn K (2020) Rapid next-generation sequencing-based diagnostics of bacteremia in septic patients. J Mol Diagn 22(3):405–418. https://doi.org/10.1016/j.jmoldx.2019.12.006

    Article  CAS  PubMed  Google Scholar 

  16. Strich JR, Heil EL, Masur H (2020) Considerations for empiric antimicrobial therapy in sepsis and septic shock in an era of antimicrobial resistance. J Infect Dis 222(Supplement_2):S119–SS31. https://doi.org/10.1093/infdis/jiaa221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ehren K, Meissner A, Jazmati N, Wille J, Jung N, Vehreschild JJ, Hellmich M, Seifert H (2020) Clinical impact of rapid species identification from positive blood cultures with same-day phenotypic antimicrobial susceptibility testing on the management and outcome of bloodstream infections. Clin Infect Dis 70(7):1285–1293. https://doi.org/10.1093/cid/ciz406

    Article  PubMed  Google Scholar 

  18. Posteraro P, Gasparoli C, Errico FM, Massaria G, Sanguinetti M, Posteraro B (2019) Off-site versus on-site clinical microbiology laboratory: a 2-year comparison study of blood culture result reporting. Clin Microbiol Infect 25(11):1441–1442. https://doi.org/10.1016/j.cmi.2019.06.021

    Article  CAS  PubMed  Google Scholar 

  19. Opota O, Croxatto A, Prod’hom G, Greub G (2015) Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 21(4):313–322. https://doi.org/10.1016/j.cmi.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  20. Jonasson E, Matuschek E, Kahlmeter G (2020) The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J Antimicrob Chemother 75(4):968–978. https://doi.org/10.1093/jac/dkz548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jasuja JK, Zimmermann S, Burckhardt I (2020) Evaluation of EUCAST rapid antimicrobial susceptibility testing (RAST) for positive blood cultures in clinical practice using a total lab automation. Eur J Clin Microbiol Infect Dis 39(7):1305–1313. https://doi.org/10.1007/s10096-020-03846-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bourbeau PP, Ledeboer NA (2013) Automation in clinical microbiology. J Clin Microbiol 51(6):1658–1665. https://doi.org/10.1128/JCM.00301-13

    Article  PubMed  PubMed Central  Google Scholar 

  23. Croxatto A, Marcelpoil R, Orny C, Morel D, Prod’hom G, Greub G (2017) Towards automated detection, semi-quantification and identification of microbial growth in clinical bacteriology: a proof of concept. Biom J 40(6):317–328. https://doi.org/10.1016/j.bj.2017.09.001

    Article  Google Scholar 

  24. Bailey AL, Ledeboer N, Burnham CD (2019) Clinical microbiology is growing up: the total laboratory automation revolution. Clin Chem 65(5):634–643. https://doi.org/10.1373/clinchem.2017.274522

    Article  CAS  PubMed  Google Scholar 

  25. Clinical and Laboratory Standards Institute (2020) CLSI M100-ED30:2020 performance standards for antimicrobial susceptibility testing, 30th edn. In. Clinical and Laboratory Standards Institute, Wayne, PA

  26. Osih RB, McGregor JC, Rich SE, Moore AC, Furuno JP, Perencevich EN, Harris AD (2007) Impact of empiric antibiotic therapy on outcomes in patients with Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 51(3):839–844

    Article  CAS  PubMed  Google Scholar 

  27. Lodise TP Jr, Patel N, Kwa A, Graves J, Furuno JP, Graffunder E, Lomaestro B, McGregor JC (2007) Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 51(10):3510–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morata L, Cobos-Trigueros N, Martinez JA, Soriano A, Almela M, Marco F, Sterzik H, Nunez R, Hernandez C, Mensa J (2012) Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother 56(9):4833–4837. https://doi.org/10.1128/AAC.00750-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tofas P, Samarkos M, Piperaki ET, Kosmidis C, Triantafyllopoulou ID, Kotsopoulou M, Pantazatou A, Perlorentzou S, Poulli A, Vagia M, Daikos GL (2017) Pseudomonas aeruginosa bacteraemia in patients with hematologic malignancies: risk factors, treatment and outcome. Diagn Microbiol Infect Dis 88(4):335–341. https://doi.org/10.1016/j.diagmicrobio.2017.05.003

    Article  PubMed  Google Scholar 

  30. Tacconelli E, Cataldo MA, Mutters NT, Carrara E, Bartoloni A, Raglio A, Cauda R, Mantengoli E, Luzzaro F, Pan A, Beccara LA, Pecile P, Tinelli M, Rossolini GM (2019) Role of place of acquisition and inappropriate empirical antibiotic therapy on the outcome of extended-spectrum beta-lactamase-producing Enterobacteriaceae infections. Int J Antimicrob Agents 54(1):49–54. https://doi.org/10.1016/j.ijantimicag.2019.04.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues at the Microbiology Department of the University of Louisville Hospital, Louisville, KY, USA, for the assistance with the conduct of this study.

Availability of data

The datasets generated and/or analyzed during the current study are available from KST (kenneth.thomson20@gmail.com) on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

The contributions from the respective authors were as follows: Thomson, G. and Jamros, K, design and technical oversight of the study, data acquisition, analysis and interpretation of data, drafting and revising the manuscript for intellectual content, and final approval for submission; Thomson, K., analysis and interpretation of data, drafting and revising the manuscript for intellectual content, and final approval for submission; Snyder, J., analysis and interpretation of data, drafting and revising the manuscript for intellectual content, and final approval for submission.

Corresponding author

Correspondence to Gina K. Thomson.

Ethics declarations

Ethical approval

This study does not contain any studies with human participants performed by any of the authors.

Consent to participate

Not applicable. This study does not contain any studies with human participants.

Consent to publish

Not applicable. The authors have no constraints to declare concerning the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomson, G.K., Jamros, K., Snyder, J.W. et al. Digital imaging for reading of direct rapid antibiotic susceptibility tests from positive blood cultures. Eur J Clin Microbiol Infect Dis 40, 2105–2112 (2021). https://doi.org/10.1007/s10096-021-04249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04249-8

Keywords

Navigation