Skip to main content

Advertisement

Log in

Soil moisture change analysis under watershed management practice using in situ and remote sensing data in a paired watershed

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil moisture, vegetation cover, and land surface temperature are vital variables in water-energy balance, eco-hydrological processes, and water resources management, which can be influenced by watershed management activities. This research focused on the spatial and temporal variability of soil moisture, vegetation cover, land surface temperature, and Temperature-Vegetation Dryness Index (TVDI) under a biological watershed management practice in the Taleghan paired watershed, namely, treated (TW) and control watersheds (CW), in Alborz province, Iran. In this research, along with the remote sensing techniques, the soil moisture and vegetation cover data were measured and statistically analyzed in the three aspects of both TW and CW during a growth period from May to October 2017. The results indicated that soil moisture, vegetation cover, and land surface temperature values in the paired watershed were significantly different at the 0.01 level during the study period. The increased vegetation cover in the TW had an inverse effect on the land surface temperature and TVDI, while directly impacted the soil moisture content. The average TVDI in the CW was 0.83, while this index was found to be 0.69 in the TW. Unlike the vegetation cover and soil moisture, the results revealed that the southern aspects had the highest TVDI and land surface temperature compared to the northern and eastern aspects of both watersheds. However, the increased vegetation cover as a biological watershed management activity in the steep terrain and mountainous areas of TW led to an increased soil moisture and a decreased land surface temperature and soil dryness. As a result, decreasing soil dryness in the TW can exert vital controls on the water resources and increasing water availability. In the arid and semiarid countries such as Iran, a proper watershed management activity can effectively increase soil moisture and water availability in the watersheds. In particular, the vegetation cover protection and biological practices can be considered as practical solutions in the rehabilitation of exhausted watersheds in arid and semiarid environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmad, A., Zhang, Y., & Nichols, S. (2011). Review and evaluation of remote sensing methods for soil-moisture estimation. SPIE Reviews, 2, 028001.

    Google Scholar 

  • Alemu, M. M. (2019). Analysis of spatio-temporal land surface temperature and normalized difference vegetation index changes in the Andassa Watershed. Blue Nile Basin, Ethiopia, Journal of Resources and Ecology., 10(1), 77–85.

    Google Scholar 

  • Allen, R.G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) - Model. Journal of Irrigation and Drainage Engineering 133(4) 380-394.

  • Amani, M., Salehi, S., Mahdavi, S., Masjedi, A., & Dehnavi, S. (2017). Temperature-Vegetation-soil Moisture Dryness Index (TVMDI). Remote Sensing of Environment, 197, 1–14.

    Google Scholar 

  • Amooh, M., & Bonsu, M. (2015). Effects of soil texture and organic matter on evaporative loss of soil moisture. Journal of Global Agriculture and Ecology., 3, 152–161.

    Google Scholar 

  • BAI, J. J., Yuan, Y. U., & Di, L. (2017). Comparison between TVDI and CWSI for drought monitoring in the Guanzhong Plain, China. Journal of integrative agriculture, 16(2), 389-397.

  • Begum, F., Bajracharya, R. M., Sharma, S., & Sitaula, B. K. (2010). Influence of slope aspect on soil physico-chemical and biological properties in the mid hills of central Nepal. International Journal of Sustainable Development & World Ecology, 17(5), 438-443.

  • Bernstein, L. S. (2012). Quick atmospheric correction code: Algorithm description and recent upgrades. Optical Engineering, 51, 111719.

    Google Scholar 

  • Biswas, A., & Si, B. C. (2011). Revealing the controls of soil water storage at different scales in a hummocky landscape. Soil Science Society of America Journal, 75, 1295–1306

    CAS  Google Scholar 

  • Cao, Y., Chen, S., Wang, L., Zhu, B., Lu, T., & Yu, Y. (2019). An agricultural drought index for assessing droughts using a water balance method: A case study in Jilin Province. Northeast China. Remote Sens., 11, 1066.

    Google Scholar 

  • Carlson, T. N., Gillies, R. R., & Perryp, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9, 161–173.

    Google Scholar 

  • Chauhan, N. S., Miller, S., & Ardanuy, P. (2003). Spaceborne soil moisture estimation at high resolution: A microwave optical/IR synergistic method. International Journal of Remote Sensing, 24(22), 4599–4622.

    Google Scholar 

  • Chen, J., Wen, J., & Tian, H. (2016). Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements. Journal of Hydrology, 533, 62–73.

    Google Scholar 

  • Chen, J., Wang, Ch., Jiang, H., Mao, L., & Yu, Z. (2011). Estimating soil moisture using Temperature-Vegetation Dryness Index (TVDI) in the Huang-huai-hai (HHH) plain. International Journal of Remote Sensing., 32, 1165–1177. https://doi.org/10.1080/01431160903527421

    Article  Google Scholar 

  • Chen, L. D., Huang, Z. L., Gong, J., Fu, B. J., & Huang, Y. L. (2007). The effect of land cover/vegetation on soil water dynamic in the hilly area of the loess plateau, China, Catena, 70, 200–208.

  • Chen, S., Wen, Z., Jiang, H., ZhaO, Q., Zhang, X., & Chen, Y. (2015). Temperature vegetation dryness index estimation of soil moisture under different tree species. Sustainability., 7, 11401–11417. https://doi.org/10.3390/su70911401

    Article  CAS  Google Scholar 

  • Cosby, B. J., Hornberger, G. M., Clapp, R. B., & Ginn, T. (1984). A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20(6), 682–690. https://doi.org/10.1029/WR020i006p00682

    Article  Google Scholar 

  • Crow, W.T. et al., 2012. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Reviews of Geophysics, 50 (2), RG2002.

  • Djamai, N., et al. (2015). Disaggregation of SMOS soil moisture over the Canadian Prairies. Remote Sensing of Environment, 170, 255–268.

    Google Scholar 

  • Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458, 110–117.

    Google Scholar 

  • Doninck, J. V., Peters, J., Baets, B. D., & Verhoest, N. (2011). The potential of multitemporal Aqua and Terra MODIS apparent thermal inertia as a soil moisture indicator. International Journal of Applied Earth Observation and Geoinformation, 13(6), 934–941.

    Google Scholar 

  • Fathizad, H., Tazeh,M., Kalantari, S., Shojaei, S. 2017. The investigation of spatiotemporal variations of land surface temperature based on land use changes using NDVI in southwest of Iran, Journal of African Earth Sciences 134, 249e256.

  • Feng, Z., Li-Wen, Z., Jing-Jing, S., & Jing-Feng, H. (2014). Soil moisture monitoring based on land surface temperature-vegetation index space derived from MODIS data. Pedosphere, 24(4), 450–460.

    Google Scholar 

  • Fu, B., Wang, J., Chen, L., & Qiu, Y. (2003). The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. CATENA, 54, 197–213.

    Google Scholar 

  • Fu, B. J., & Chen, L. D. (2000). Agricultural landscape spatial pattern analysis in the semi-arid hill area of the Loess Plateau. China. J. Arid Environ., 44, 291–303.

    Google Scholar 

  • Ghahremanloo, M., Mobasheri, M. R., & Amani, M. (2019). Soil moisture estimation using land surface temperature and soil temperature at 5 cm depth. International Journal of Remote Sensing, 40(1), 104–117. https://doi.org/10.1080/01431161.2018.1501167

    Article  Google Scholar 

  • Gao, Z., Gaob, W., & Chang, N. (2011). Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. International Journal of Applied Earth Observation and Geoinformation, 13, 495–503.

    Google Scholar 

  • Gao, X., Wu, P., Zhao, X., Wang, J., & Shi, Y. (2014). Effects of land use on soil moisture variations in a semi-arid catchment: Implications for land and agricultural water management. Land Degradation and Development, 25(2), 163–172.

    Google Scholar 

  • Garcia, M., Fernandez, N., Villagarcía, L., Domingo, F., Puigdefábregas, J., & Sandholt, I. (2014). Accuracy of the Temperature-Vegetation Dryness Index using MODIS under water-limited vs. energy-limited evapotranspiration conditions. Remote Sensing of Environment, 149, 100–117.

    Google Scholar 

  • Gardner, W.H., 1986. Water content. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods, seconded. Soil Science Society of America, Inc., Madison, Wisconsin (Chapter 21).

  • Gémes, O., Tobak, Z., & Van Leeuwen, B. (2016). Satellite based analysis of surface urban heat island intensity. Journal of environmental geography, 9(1-2), 23-30.

  • Grigoraș, G., & Urițescu, B. (2019). Land use/land cover changes dynamics and their effects on surface urban heat island in Bucharest, Romania. International Journal of Applied Earth Observation and Geoinformation, 80, 115-126.

  • Gwak, Y., & Kim, S. (2017). Factors affecting soil moisture spatial variability for a humid forest hillslope Hydrological Processes. 31, 431–445. https://doi.org/10.1002/hyp.11039

  • Han, Y., Wang, Y. Q., & Zhao, Y. S. 2010. Estimating soil moisture conditions of the greater Changbai Mountains by land surface temperature and NDVI. IEEE Transactions on Geoscience and Remote Sensing, 48, 2509–2515.

  • Helsel, D.R., & Hirsch, R.M. (2002). Statistical methods in water resources. Techniques of Water Resources Investigations. Book 4, chapter A3. U.S. Geological Survey. 522 pp.

  • Hereher, M. E. 2017. Effect of land use/cover change on land surface temperatures—The Nile Delta, Egypt, Journal of African Earth Sciences 126, 75e83.

  • Holzmana, M. E., Rivasa, R., & Piccoloc, M. C. (2014). Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28, 181–192.

    Google Scholar 

  • Hu, W., & Si, B. C. (2014). Revealing the relative influence of soil and topographic properties on soil water content distribution at the watershed scale in two sites. Journal of Hydrology, 516, 107–118.

    Google Scholar 

  • Hunt, E. D., et al. (2014). Monitoring the effects of rapid onset of drought on non-irrigated maize with agronomic data and climate-based drought indices. Agricultural and Forest Meteorology., 191, 1–11.

  • Jackson, T., Mansfield, K., Saafi, M., Colman, T., & Romine, P. (2008). Measuring soil temperature and moisture using wireless MEMS sensors. Measurement, 41, 381–390.

    Google Scholar 

  • Jiang, H., Chen, J. A., Wang, C. Z., Mao, L. X., & Yu, Z. R. (2011). Estimating soil moisture using temperature–vegetation dryness index (TVDI) in the Huang-Huai-Hai (HHH) plain. International Journal of Remote Sensing, 32, 1165–1177.

    Google Scholar 

  • Johnson AI. Methods of Measuring Soil Moisture in the Field. Geological Survey Water-Supply Paper 1619-U; 1962. 20.

  • Im, J., Park, S., Rhee, J., Baik, J., & Choi, M. (2016). Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environment and Earth Science, 75(15), 1120.

    Google Scholar 

  • Karkauskaite P., Tagesson, T., Fensholt, R. 2017. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for start-of-season trend analysis of the northern hemisphere boreal zone, Remote Sens. 9, 485. https://doi.org/10.3390/rs9050485

  • Karnieli, A., Ohana-Levi, N., Silver, M., Paz-Kagan, T., Panov, N., Varghese, D., Chrysoulakis, N., Provenzale, 2019. A. Spatial and seasonal patterns in vegetation growth-limiting factors over Europe. Remote Sens.11, 2406.

  • Lan, Y., Zhang, H., Lacey, R., Hoffmann, W. C., & Wu, W. (2009). Development of an integrated sensor and instrumentation system for measuring cropconditions. Agricultural engineering journal, 11, 11–15.

    Google Scholar 

  • Lei, S. G., Bian, Z. F., Daniels, J. L., & Liu, D. L. (2014). Improved spatial resolution in soil moisture retrieval at arid mining area using apparent thermal inertia. Transact. Nonferrous Metals Soc. China, 24(6), 1866–1873.

    Google Scholar 

  • Lei, Y. P., Li, H. J., Li, C. Q., & Lin, Y. (2010). Surface temperature correction in TVDI to evaluate soil moisture over a large area. Journal of Food Agriculture & Environment, 8, 1141–1145.

    Google Scholar 

  • Lieberman, E.S. (2005). Nested analysis as a mixed-method strategy for comparative research, the American Political Science Review, Vol. 99, No. 3, pp. 435–452.

  • Liu, L., Liao, J., Chena, X., Zhou, G., Su, Y., Xiang, Z., et al. (2017). The Microwave Temperature Vegetation Drought Index (MTVDI) based on AMSR-E brightness temperatures for long-term drought assessment across China (2003 2010). Remote Sensing of Environment, 199, 302–320.

    Google Scholar 

  • Long, D., & Singh, V. P. (2012). A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sensing of Environment, 121, 370–388.

    Google Scholar 

  • Malekian, A., Kazemzadeh, M. 2015. Spatio-Temporal Analysis of Regional Trends and Shift Changes of autocorrelated temperature series in Urmia Lake Basin. Water Resource Management https://doi.org/10.1007/s11269-015-1190-9

  • Mårena, I.E., Karki, S., Prajapati, C., Yadavb, R.K. Shrestha, B.B. 2015. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley?, Journal of Arid Environments, 112–123.

  • McCuen RH. 2002. Modeling hydrologic change: Statistical methods. Lewis Publishers, Boca Raton, p 10, 433.

  • Mallick, K., Bhattacharya, B. K., & Patel, N. K. (2009). Estimating volumetric surface moisture content for cropped soils using a soilwetness index based on surface temperature and NDVI. Agricultural and Forest Meteorology, 149, 1327–1342.

    Google Scholar 

  • Méndez-Barroso, L. A., Garatuza-Payán, J., & Vivoni, E. R. (2008). Quantifying water stress on wheat using remote sensing in the Yaqui Valley, Sonora. Mexico. Agricultural water management, 95(6), 725–736.

    Google Scholar 

  • Minacapilli, M., Agnese, C., Blanda, F., Cammalleri, C., Ciraolo, G., Urso, G. D., Iovino, M., Pumo, D., Provenzano, G., & Rallo, G. (2009). Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote sensing based surface energy balance models. Hydrology and Earth System Sciences, 13, 1061–1074

    Google Scholar 

  • Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49, 246–263

    Google Scholar 

  • Owe, M., de Jeu, R. A. M., & Holmes, T. R. H. (2008). Multisensor historical climatology of satellite-derived global land surface moisture. Journal of Geophysical Research. Earth Surface, 113, F01002

    Google Scholar 

  • Pablos, M., Martínez-Fernández, J., Piles, M., Sánchez, N., Vall-llossera, M., Camps, A. 2016. Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations, Remote Sensing, 8(7), 587; https://doi.org/10.3390/rs8070587

  • Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre q. The Egyptian Journal of Remote Sensing and Space Sciences, 20(1), 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003

    Article  Google Scholar 

  • Pakparvar, M., Hashemi, H., Rezaei, M., Cornelis, W. M., Nekooeian, G., & Kowsar, S. A. (2018). Artificial recharge efficiency assessment by soil water balance and modelling approaches in a multi-layered vadose zone in a dry region. Hydrological Sciences Journal, 63(8), 1183–1202. https://doi.org/10.1080/02626667.2018.1481962

    Article  CAS  Google Scholar 

  • Parka, S., Ima, J., Parka, S., & Rhee, J. (2017). Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agricultural and Forest Meteorology, 237–238, 257–269.

    Google Scholar 

  • Patel, N. R., Anapashsha, R., Kumar, S., Saha, S. K., & Dadhwal, V. K. (2009). Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. International Journal of Remote Sensing, 30, 23–39.

    Google Scholar 

  • Peng, X., Dai, Q., Ding, G., Zhu, C., & Li, C. (2017). Distribution and accumulation of trace elements in rhizosphere and non-rhizosphere soils on a karst plateau after vegetation restoration. Plant Soil 420, 49e60.

  • Petropoulos, G., Carlson, T. N., Wooster, M. J., & Islam, S. (2009). A review of T-s/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture. Progress in Physical Geography, 33, 224–250.

    Google Scholar 

  • Petropoulos, G. P., Ireland, G., & Barrett, B. (2015). Surface soil moisture retrievals from remote sensing: Current status, product & future trends. Physics and Chemistry of the Earth, 83–84, 35–56.

    Google Scholar 

  • Porporato, A., D’odorico, P., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2002). Ecohydrology of water-controlled ecosystems. Advances in Water Resources, 25(8-12), 1335-1348.

  • Price, J. C. (1990). Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Transactions on Geoscience and Remote Sensing, 28, 940–948.

    Google Scholar 

  • Qi, S. H., Wang, C. Y., & Niu, Z. (2003). Evaluating soil moistur status in China using the temperature/vegetation dryness index (TVDI). Journal of Remote Sensing, 7, 420–427 (In Chinese).

    Google Scholar 

  • Qi, S. H., Wang, C. Y., Niu, Z., & Wang, J. B. (2004). Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI). Canadian Journal of Remote Sensing, 30, 671–679.

    Google Scholar 

  • Qin, J., Yang, K., Lu, N., Chen, Y., Zhao, L., & Han, M. (2013). Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sensing of Environment, 138, 1–9.

    Google Scholar 

  • Rahimzadeh-Bajgiran, P., Omasa, K., & Shimizu, Y. (2012). Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 1–12.

    Google Scholar 

  • Reynolds, S. G. (1970). The gravimetric method of soil moisture determination. Journal of Hydrology, 11(3), 258–273p.

    Google Scholar 

  • Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: I. Scope and general outline. Advances in Water Resources, 24(7), 695-705.

  • Rouse, J. W., Haas, R. H.,  Schell, J. A., Deering, D. W., Harlan, J. C., (1974). Monitoring the vernal advancement of retrogradation of natural vegetation; Type III, final report; NASA/GSFC: Greenbelt, MD, USA.

  • Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79(2–3), 213–224.

    Google Scholar 

  • Senay, G. B., Friedrichs, M., Singh, R. K., & Velpuri, N. M. (2016). Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sensing of Environment, 185, 171–185.

    Google Scholar 

  • Sharma, P. K., Kumar, D., Srivastava, H. S., & Patel, P. (2018). Assessment of different methods for soil moisture estimation: A review. Journal of Remote Sensing & GIS, 9, 1.

    Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90, 434–440.

    Google Scholar 

  • Sruthi, S., & Aslam, M. A. M. (2015). Agricultural Drought analysis using the NDVI and land surface temperature data: a case study of Raichur District. Aquatic Procedia, 4, 1258–1264. https://doi.org/10.1016/j.aqpro.02.164

    Article  Google Scholar 

  • Tagessona, T., Horiona, S., Nieto, H., ZaldoFornies, V., MendigurenGonzálezd, G., Bulgin, C. E., et al. (2018). Disaggregation of SMOS soil moisture over West Africa using the Temperature and Vegetation Dryness Index based on SEVIRI land surface parameters. Remote Sensing of Environment, 206, 424–441.

    Google Scholar 

  • Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., et al. (2014). On the spatiotemporal dynamics of soil moisture at the field scale. Journal of Hydrology, 516, 76–96.

    Google Scholar 

  • Wang, Y. L., Li, Z. G., Zhou, Q. B., Wu, J. S., Peng, J., & Chang, H. F. (2008). Spatiotemporal variability of land surface moisture based on vegetation and temperature characteristics in Northern Shaanxi Loess Plateau, China. Journal of Arid Environments, 72, 974–985.

    Google Scholar 

  • Wang, D., Ma, R., Xue, K., Loiselle, S.A. 2019. The assessment of Landsat-8 OLI atmospheric correction algorithms for inland waters, Remote Sensing 11, 169. https://doi.org/10.3390/rs11020169

  • Wilcox, B. P., & Newman, B. D. (2005). Ecohydrology of Semiarid Landscapes 1. Ecology, 86(2), 275-276.

  • Wukelic, G., Gibbons, D., Martucci, L., & Foote, H. (1989). Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sensing of Environment, 28, 339–347.

    Google Scholar 

  • Xu, X., Li, J., & Tolson, B. A. (2014). Progress in integrating remote sensing data and hydrologic modeling. Progress in Physical Geography, 38, 464–498.

    Google Scholar 

  • Yang, X., Wu, J. J., & Yan, F. (2009). Assessment of regional soil moisture status based on characteristics of surface temperature/vegetation index space. ActaEcologicaSnica, 29, 1205–1216 (In Chinese).

    Google Scholar 

  • Yu, B.W., Liu, G.H., Liu, Q.S., Wang, X.P., Feng, J.L., & Huang, C. (2018). Soil moisture variations at different topographic domains and land use types in the semiarid Loess Plateau, China. Catena,  165, 125–132.

  • Yang, Y., Zhu, J., Zhao, C., & LiuS, T. (2010). The spatial continuity study of NDVI basedonKriging and BPNN algorithm. Journal of Mathematical and computer modelling., 11, 77–85.

    Google Scholar 

  • Zhang, G., Yan, J., Zhu, X., Ling, H., Xu, H. (2019). Spatio-temporal variation in grassland degradation and its main drivers, based on biomass: Case study in the Altay Prefecture China. Global Ecology and Conservation 20https://doi.org/10.1016/j.gecco.2019.e00723

  • Zhao, W., & Li, Z. L. (2013). Sensitivity study of soil moisture on the temporal evolution of surface temperature over bare surfaces. International Journal of Remote Sensing, 34(9–10), 3314–3331.

    Google Scholar 

  • Zhibin, R., Haifeng, Z., Xingyuan, H., et al. (2015). Estimation of the relationship between urban vegetation configuration and land surface temperature with remote sensing. Journal of the Indian Society of Remote Sensing, 43(1), 89–100. https://doi.org/10.1007/s12524-014-0373-9

    Article  Google Scholar 

  • Zubair Younis, S. M., & Iqbal, J. (2015). Estimation of soil moisture using multispectral and FTIR techniques. The Egyptian Journal of Remote Sensing and Space Sciences, 18, 151–161.

    Google Scholar 

  • Zhu, Q., & Lin, H. (2011). Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma, 163, 45–54.

    Google Scholar 

  • Zhu, W., Jia, S., & Lv, A. (2017). A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous soil moisture monitoring. Remote Sensing of Environment, 200, 1–17.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Forest, Range, and Watershed Management Organization (FRWO) and the Department of Natural Resources and Watershed Management of Alborz province for establishing the Taleghan paired-watershed project in 2011. We also acknowledge the US Geological Survey (USGS) for providing the Landsat 8 images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Kazemzadeh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemzadeh, M., Salajegheh, A., Malekian, A. et al. Soil moisture change analysis under watershed management practice using in situ and remote sensing data in a paired watershed. Environ Monit Assess 193, 299 (2021). https://doi.org/10.1007/s10661-021-09078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09078-y

Keywords

Navigation