Skip to main content
Log in

Quantum Breathers in a Two-Dimensional Hexangular Heisenberg Ferromagnet

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a theoretical study on quantum breathers in a XXZ Heisenberg ferromagnet with the single-ion uniaxial anisotropy on a two-dimensional hexangular lattice. In our work, the full quantum and the semiclassical cases are considered, respectively. For the full quantum case, we find that some isolated two-magnon bands can exist below the free magnon band. Physically, each isolated two-magnon band correspond to a two-magnon bound state, which is the simplest quantum breather state. For the semiclassical case, the analytical form of the discrete breather solution with a line localized structure is obtained by adopting the Glauber’s coherent-state representation. Furthermore, the influence of the anisotropy on the properties of quantum breathers is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Flach, S., Gorbach, A.V.: Discrete breathers–advances in theory and applications. Phys. Rep. 467, 1–116 (2008)

    Article  MATH  ADS  Google Scholar 

  2. Sievers, A.J., Takeno, S.: Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)

    Article  ADS  Google Scholar 

  3. Hizhnyakov, V., Shelkan, A., Klopov, M., Kiselev, S.A., Sievers, A.J.: Linear local modes induced by intrinsic localized modes in a monatomic chain. Phys. Rev. B. 73, 224302 (2006)

    Article  ADS  Google Scholar 

  4. Gendelman, O.V., Manevitch, L.I.: Discrete breathers in vibroimpact chains: analytic solutions. Phys. Rev. E. 78, 026609 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Doi, Y.: Energy exchange in collisions of intrinsic localized modes. Phys. Rev. E. 68, 066608 (2003)

    Article  ADS  Google Scholar 

  6. Khomeriki, R.: Interaction of a kink soliton with a breather in a Fermi-pasta-Ulam chain. Phys. Rev. E. 65, 026605 (2002)

    Article  ADS  Google Scholar 

  7. Doi, Y., Nakatani, A.: Interaction of intrinsic localized modes with structures in anharmonic lattice systems. Modelling Simul. Mater. Sci. Eng. 14, S85–S94 (2006)

    Article  ADS  Google Scholar 

  8. Marín, J.L., Aubry, S., Floría, L.M.: Intrinsic localized modes: discrete breathers. Existence and linear stability. Physcia D. 113, 283–292 (1998)

    MATH  Google Scholar 

  9. MacKay, R.S., Aubry, S.: Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity. 7, 1623–1643 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Feng, B.F., Takuji, K.: Discrete breathers in two-dimensional nonlinear lattices. Wave Motion. 45, 68–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wattis, J.A.D., James, M., Lauren: Discrete breathers in honeycomb Fermi–pasta–Ulam lattices. J. Phys. A Math. Theor. 47, 345101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fleischer, J.W., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature. 422, 147–150 (2003)

    Article  ADS  Google Scholar 

  13. Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y.: Observation of breathers in josephson ladders. Phys. Rev. Lett. 84, 745–748 (2000)

    Article  ADS  Google Scholar 

  14. Sato, M., Sievers, A.J.: Direct observation of the discrete character of intrinsic localized modes in an antiferromagnet. Nature. 432, 486–488 (2004)

    Article  ADS  Google Scholar 

  15. Boechler, N., Theocharis, G., Job, S., Kevrekidis, P.G., Porter, M.A., Daraio, C.: Discrete breathers in one-dimensional diatomic granular crystals. Phys. Rev. Lett. 104, 244302 (2010)

    Article  ADS  Google Scholar 

  16. Rakhmanova, S.V., Shchegrov, A.V.: Intrinsic localized modes of bright and dark types in ferromagnetic Heisenberg chains. Phys. Rev. B. 57, R14012–R14015 (1998)

    Article  ADS  Google Scholar 

  17. Lai, R., Kiselev, S.A., Sievers, A.J.: Intrinsic localized spin-wave resonances in ferromagnetic chains with nearest- and next-nearest-neighbor exchange interactions. Phys. Rev. B. 56, 5345–5354 (1997)

    Article  ADS  Google Scholar 

  18. Zolotaryuk, Y., Flach, S., Fleurov, V.: Discrete breathers in classical spin lattices. Phys. Rev. B. 63, 214422 (2001)

    Article  ADS  Google Scholar 

  19. Khalack, J.M., Zolotaryuk, Y., Christiansen, P.L.: Discrete breathers in classical ferromagnetic lattices with easy-plane anisotropy. Chaos. 13, 683–694 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Wallis, R.F., Mills, D.L., Boardman, A.D.: Intrinsic localized spin modes in ferromagnetic chains with on-site anisotropy. Phys. Rev. B. 52, R3828–R3831 (1995)

    Article  ADS  Google Scholar 

  21. Huang, G., Zhang, S., Hu, B.: Nonlinear excitations in ferromagnetic chains with nearest- and next-nearest-neighbor exchange interactions. Phys. Rev. B. 58, 9194–9206 (1998)

    Article  ADS  Google Scholar 

  22. Lakshmanan, M., Subash, B., Saxena, A.: Intrinsic localized modes of a classical discrete anisotropic Heisenberg ferromagnetic spin chain. Phys. Lett. A. 378, 1119–1125 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Noble, P.: Existence of breathers in classical ferromagnetic lattices. Nonlinearity. 17, 803–816 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Lai, R., Sievers, A.J.: Nonlinear nanoscale localization of magnetic excitations in atomic lattices. Phys. Rep. 314, 147–236 (1999)

    Article  ADS  Google Scholar 

  25. Bethe, H.: Zur Theorie der Metalle. Z. Phys. 71, 205–226 (1931)

    Google Scholar 

  26. Hanus, J.: Bound states in the Heisenberg ferromagnet. Phys. Rev. Lett. 11, 336–338 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  27. Nobuyuki, F., Michael, W.: Bound states in the spin wave problem. J. Phys.Chem. Solids. 24, 1675–1677 (1963)

    Article  Google Scholar 

  28. Ono, I., Mikado, S., Oguchi, T.: Two-magnon bound states in a linear Heisenberg chain with nearest and next nearest neighbor interactions. J. Phys. Soc. Jpn. 30, 358–366 (1971)

    Article  ADS  Google Scholar 

  29. Oguchi, T.: Theory of two-magnon bound dtates in the Heisenberg ferro- and antiferromagnet. J. Phys. Soc. Jpn. 31, 394–402 (1971)

    Article  ADS  Google Scholar 

  30. Djoufack, Z.I., Kenfack, J.A., Nguenang, J.P., Domngang, S.: Quantum signatures of breathers in a finite Heisenberg spin chain. J. Phys. Condens. Matter. 22, 205502 (2010)

    Article  ADS  Google Scholar 

  31. Djoufack, Z.I., Kenfack, J.A., Nguenang, J.P.: Quantum breathers in a finite Heisenberg spin chain with antisymmetric interactions. Eur. Phys. J. B. 85, 96 (2012)

    Article  ADS  Google Scholar 

  32. Wada, K., Ishikawa, T., Oguchi, T.: Two-magnon bound states in the triangular and honeycomb Heisenberg ferromagnets. Prog. Theo. Phys. 54, 1589–1598 (1975)

    Article  ADS  Google Scholar 

  33. Koh, W., Yō, M.: Two-magnon bound state in a fcc Heisenberg ferromagnet. Phys. Lett. A. 59, 311–312 (1976)

    Article  Google Scholar 

  34. Rastelli, E., Sedazzari, S., Tassi, A.: Two-magnon bound states in the triangular ferromagnet. J. Phys. Condens. Matter. 4, 6283–6292 (1992)

    Article  ADS  Google Scholar 

  35. Takeno, S., Kawasaki, K.: Intrinsic self-localized magnons in one-dimensional antiferromagnets. Phys. Rev. B. 45, 5083–5086 (1992)

    Article  ADS  Google Scholar 

  36. Huang, G., Xu, Z., Xu, W.: Magnetic gap solitons as the intrinsic self-localized magnons in Heisenberg antiferromagnetic chain. J. Phys. Soc. Jpn. 62, 3231–3238 (1993)

    Article  ADS  Google Scholar 

  37. Nguenang, J.P., Peyrard, M., Kenfack, A.J., Kofané, T.C.: On modulational instability of nonlinear waves in 1D ferromagnetic spin chains. J. Phys. Condens. Matter. 17, 3083–3112 (2005)

    Article  ADS  Google Scholar 

  38. Kavitha, L., Parasuraman, E., Gopi, D., Prabhu, A., Vicencio, R.A.: Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice. J. Magn. Magn. Mater. 401, 394–405 (2015)

    Article  ADS  Google Scholar 

  39. Kavitha, L., Mohamadou, A., Parasuraman, E., Gopi, D., Akila, N., Prabhu, A.: Modulational instability and nano-scale energy localization in ferromagnetic spin chain with higher order dispersive interactions. J. Magn. Magn. Mater. 404, 91–138 (2016)

    Article  Google Scholar 

  40. Tang, B., Li, G.L., Fu, M.: Modulational instability and localized modes in Heisenberg ferromagnetic chains with single-ion easy-axis anisotropy. J. Magn. Magn. Mater. 426, 429–434 (2017)

    Article  ADS  Google Scholar 

  41. Xie, J., Deng, Z., Chang, X., Tang, B.: Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling. Chin. Phys. B. 28, 077501 (2019)

    Article  ADS  Google Scholar 

  42. Tang, B., Li, D.J., Tang, Y.: Spin discrete breathers in two-dimensional square anisotropic ferromagnets. Phys. Scr. 89, 095208 (2014)

    Article  ADS  Google Scholar 

  43. Wu, T., Xie, J., Chang, X., Tang, B.: Intrinsic localized spin wave modes and modulational instability in a two-dimensional Heisenberg ferromagnet. Int. J. Theor. Phys. 56, 3005–3018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Benedek, G.B., Kushida, T.: The pressure dependence of the knight shift in the alkali metals and copper. J. Phys. Chem. Solids. 4, 241–255 (1958)

    Article  Google Scholar 

  45. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960)

    Article  ADS  Google Scholar 

  46. Glauber, R.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Remoissenet, M.: Low-amplitude breather and envelope solitons in quasi-one-dimensional physical models. Phys. Rev. B. 33, 2386–2392 (1986)

    Article  ADS  Google Scholar 

  48. Zhang, X., Wang, L., Liu, C., Li, M., Zhao, Y.C.: High-dimensional nonlinear wave transitions and their mechanisms. Chaos. 30, 113107 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Zhang, H.S., Wang, L., Wang, X., Xie, X.Y.: Transformed nonlinear waves, state transitions and modulation instability in a three-component AB model for the geophysical flows. Nonlinear Dynam. 102, 349–362 (2020)

    Article  Google Scholar 

  50. Zhang, H. S., Wang, L., Sun, W. R., Wang, X., Xu, T.: Mechanisms of stationary converted waves and their complexes in the multi-component AB system. Physica D 419, 132849 (2021)

  51. Kong, L.Q., Wang, L., Wang, D.S., Dai, C.Q., Wen, X.Y., Xu, L.: Evolution of initial discontinuity for the defocusing complex modified KdV equation. Nonlinear Dynam. 98, 691–702 (2019)

  52. Anjan, B.: 1-soliton solution of (1+2)-dimensional nonlinear Schrödinger's equation in dual-power law media. Phys. Lett. A. 372, 5941–5943 (2008)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 12064011, 11875126, and 11964011, the Natural Science Fund Project of Hunan Province under Grant No. 2020JJ4498, and the Graduate Research Innovation Foundation of Jishou University under Grant No. JGY202029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Tang.

Ethics declarations

Competing Financial Interests

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Wu, L., Tang, B. et al. Quantum Breathers in a Two-Dimensional Hexangular Heisenberg Ferromagnet. Int J Theor Phys 60, 1438–1454 (2021). https://doi.org/10.1007/s10773-021-04769-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04769-1

Keywords

Navigation