Skip to main content
Log in

The solution of D+1-dimensional Dirac equation for diatomic molecules with the Morse potential

  • Regular Article - Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, the solutions of the D+1-dimensional Dirac equation in the presence of the Morse potential are investigated by using the supersymmetric quantum mechanics and shape invariance theory with spin symmetry. The bound state energy spectrum and the ground state wave function are calculated by supersymmetry approach. Also, it is shown that the energy spectrum and vibrational energy eigenvalue at the critical point can be obtained by a numerical method which is called the asymptotic iteration method. The \(X^2\Sigma ^+\) state of the CP and \(X^1\Sigma ^+\) state of the \(SiF^+\) molecules are considered, and their relativistic energy eigenvalues are studied.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sharing is not applicable to this article as no new data were created or analyzed in this study.]

References

  1. S.H. Dong, Wave Equation in Higher Dimensions (Springer, Berlin, 2011)

    Book  Google Scholar 

  2. B.H. Yazarloo, H. Hassanabadi, S. Zarrinkamar, Eur. Phys. J. Plus 127, 51 (2012)

    Article  Google Scholar 

  3. S. Ortakaya, Few-Body Syst. 54, 1901 (2013)

    Article  ADS  Google Scholar 

  4. J.F. Du, P. Guo, C.S. Jia, J. Math. Chem. 52, 2559 (2014)

    Article  MathSciNet  Google Scholar 

  5. C.S. Jia, L.H. Zhang, X.T. Hu, H.M. Tang, G.C. Liang, J. Mol. Spectrosc. 311, 69 (2015)

    Article  ADS  Google Scholar 

  6. X.Y. Gu, Z.Q. Ma, S.H. Dong, Int. J. Mod. Phys. E 11, 335 (2002)

    Article  ADS  Google Scholar 

  7. S.H. Dong, J. Phys. A: Math. Gen. 36, 4977 (2003)

    Article  ADS  Google Scholar 

  8. S.H. Dong, Phys. Scr. 67, 377 (2003)

    Article  ADS  Google Scholar 

  9. S.H. Dong, M. Lozada-Cassou, Int. J. Mod. Phys. E 13, 917 (2004)

    Article  ADS  Google Scholar 

  10. T.T. Ibrahim, K.J. Oyewumi, S.M. Wyngaardt, Eur. Phys. J. Plus 127, 100 (2012)

    Article  Google Scholar 

  11. A.N. Ikot, B.H. Yazarloo, S. Zarrinkamar, H. Hassanabadi, Eur. Phys. J. Plus 129, 79 (2014)

    Article  Google Scholar 

  12. A.N. Ikot, H.P. Obong, H. Hassanabadi, Few-Body Syst. 56, 185 (2015)

    Article  ADS  Google Scholar 

  13. C.S. Jia, L.H. Zhang, J.Y. Liu, Eur. Phys. J. Plus 131, 2 (2016)

    Article  Google Scholar 

  14. P. Zhang, H.C. Long, C.S. Jia, Eur. Phys. J. Plus 131, 117 (2016)

    Article  Google Scholar 

  15. S.H. Dong, Foundation Phys. Lett. 15(4), 385 (2002)

    Article  Google Scholar 

  16. Z.Q. Ma, S.H. Dong, Int. J. Modern Phys. E 16, 179 (2007)

    Article  ADS  Google Scholar 

  17. P. Serra, S. Kais, Phys. Rev. Lett. 77, 466 (1996)

    Article  ADS  Google Scholar 

  18. S. Kais, Q. Shi, Phys. Rev. A 62, 060502 (2000)

    Article  ADS  Google Scholar 

  19. S. Kais, P. Serra, Adv. Chem. Phys. 125, 1 (2003)

    Google Scholar 

  20. Q. Shi, S. Kais, Chem. Phys. 309, 127 (2005)

    Article  Google Scholar 

  21. X.T. Hu, L.H. Zhang, C.S. Jia, J. Mol. Spectrosc. 297, 21 (2014)

    Article  ADS  Google Scholar 

  22. X.T. Hu, L.H. Zhang, C.S. Jia, Can. J. Chem. 92, 386 (2014)

    Article  Google Scholar 

  23. G.D. Zhang, W. Zhou, J.Y. Liu, L.H. Zhang, C.S. Jia, Chem. Phys. 439, 79 (2014)

    Article  Google Scholar 

  24. G.F. Wei, S.H. Dong, Phys. Lett. B 686, 288 (2010)

    Article  ADS  Google Scholar 

  25. M.N.A. Abdullah, A. Kumar, A.K.F. Haque et al., Eur. Phys. J. D 74, 235 (2020)

    Article  ADS  Google Scholar 

  26. G.F. Wei, X.Y. Duan, X.Y. Liu, Int. J. Mod. Phys. A 25, 1649 (2010)

    Article  ADS  Google Scholar 

  27. S. Aghaei, A. Chenaghlou, Few-Body Syst. 56, 53 (2015)

    Article  ADS  Google Scholar 

  28. S. Aghaei, A. Chenaghlou, Int. J. Mod. Phys. A 29, 1450028 (2014)

    Article  ADS  Google Scholar 

  29. M.C. Zhang, G.Q. Huang-Fu, J. Math. Phys. 52, 053518 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. O. Aydogdu, R. Sever, Few-Body Syst. 47, 193 (2010)

    Article  ADS  Google Scholar 

  31. Y. Chargui, A. Trabelsi, L. Chetouani, Phys. Lett. A 374, 531 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. Y. Chargui, L. Chetouani, A. Trabelsi, Commun. Theor. Phys. 53, 231 (2010)

    Article  ADS  Google Scholar 

  33. C.S. Jia, Y.F. Diao, J.Y. Liu, Int. J. Theor. Phys. 47, 664 (2008)

    Article  Google Scholar 

  34. V. Mohammadi, S. Aghaei, A. Chenaghlou, Int. J. Mod. Phys. A 31, 1650190 (2016)

    Article  ADS  Google Scholar 

  35. C.S. Jia, X.P. Li, L.H. Zhang, Few-Body Syst. 52, 11 (2012)

    Article  ADS  Google Scholar 

  36. V. Mohammadi, A. Chenaghlou, Int. J. Geom. Methods Mod. Phys. 14, 1750004 (2017)

    Article  MathSciNet  Google Scholar 

  37. D.A. Tumakov, D.A. Telnov, G. Plunien et al., Eur. Phys. J. D 74, 188 (2020)

    Article  ADS  Google Scholar 

  38. R. Mokhtari, R. Hoseini Sani, A. Chenaghlou, Eur. Phys. J. Plus 134, 446 (2019)

    Article  Google Scholar 

  39. S. Aghaei, A. Chenaghlou, Commun. Theor. Phys. 60, 296 (2013)

    Article  ADS  Google Scholar 

  40. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  41. A. G. Ushveridze, Sov. Phys.-Lebedev Inst. Rep. 2, 50, 54 (1988)

  42. A. G. Ushveridze, Quasi-exactly solvable models in quantum mechanics (IOP, Bristol) (1994)

  43. C.L. Ho, P. Roy, J. Phys. A 39, 4617 (2003)

    Article  ADS  Google Scholar 

  44. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhäuser, Basal/Boston, 1988)

    Book  MATH  Google Scholar 

  45. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)

    Article  ADS  Google Scholar 

  46. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 38, 1147 (2005)

    Article  ADS  Google Scholar 

  47. S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Dordrecht, 2007)

    Book  MATH  Google Scholar 

  48. C. Daskaloyannis, J. Math. Phys. 42, 1100 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  49. A. Chenaghlou, S. Aghaei, R. Mokhtari, Pramana - Journal of Physics 94, https://doi.org/10.1007/s12043-020-02024-6 (2020)

  50. C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, X.L. Peng, Phys. Lett., Sect. A: General, Atomic Solid State. Phys. 379, 137 (2015)

    Article  Google Scholar 

  51. X.Q. Zhao, C.S. Jia, Q.B. Yang, Phys. Lett. A 337, 189 (2005)

    Article  ADS  Google Scholar 

  52. A. Chenaghlou, H. Fakhri, Int. J. Quantum Chem. 101, 291 (2005)

    Article  Google Scholar 

  53. C.S. Jia, J.W. Dai, L.H. Zhang, J.Y. Liu, X.L. Peng, Phys. Lett. A 379, 137 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. E. Ackad, M. Horbatsch, J. Phys. A. 38, 3157 (2005)

    Article  MathSciNet  Google Scholar 

  55. E. Witten, Nucl. Phys. B 188, 513 (1982)

    Article  ADS  Google Scholar 

  56. L.E. Gendenshtein, J. Energy Theor. Phys. Lett. 38, 356 (1983)

    Google Scholar 

  57. A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969)

    Article  ADS  Google Scholar 

  58. K.T. Hecht, A. Adeler, Nucl. Phys. A 137, 129 (1969)

    Article  ADS  Google Scholar 

  59. A. Bohr, I. Hamamoto, B.R. Mottelson, Phys. Scr. 26, 267 (1982)

    Article  ADS  Google Scholar 

  60. J. Dudek, W. Nazarewicz, Z. Szymanski, G.A. Leander, Phys. Rev. Lett. 59, 1405 (1987)

    Article  ADS  Google Scholar 

  61. D. Troltenier, C. Bahri, J.P. Draayer, Nucl. Phys. A 586, 53 (1995)

    Article  ADS  Google Scholar 

  62. J.N. Ginocchio, Phys. Rev. Lett. 95, 252501 (2005)

    Article  ADS  Google Scholar 

  63. J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997)

    Article  ADS  Google Scholar 

  64. G.F. Wei, S.H. Dong, Phys. Lett. A 373, 49 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  65. G.F. Wei, S.H. Dong, Physica Scripta 81, 035009 (2010)

    Article  ADS  Google Scholar 

  66. S.G. Zhou, J. Meng, P. Ring, Phys. Rev. Lett. 91, 262501 (2003)

    Article  ADS  Google Scholar 

  67. P.R. Page, T. Goldman, J.N. Ginocchio, Phys. Rev. Lett. 86, 204 (2001)

    Article  ADS  Google Scholar 

  68. L.H. Zhang, X.P. Li, C.S. Jia, Phys. Lett. A 372, 2201 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  69. Y. Sun, G.D. Zhang, C.S. Jia, Chem. Phys. Lett. 636, 197 (2015)

    Article  ADS  Google Scholar 

  70. Z.W. Shui, C.S. Jia, Eur. Phys. J. Plus 131, 215 (2016)

    Article  Google Scholar 

  71. J. Wang, C.S. Jia, C.J. Li, X.L. Peng, L.H. Zhang, J.Y. Liu, ACS Omega 4(21), 19193 (2019)

    Article  Google Scholar 

  72. C.S. Jia et al., J. Molecular Liquids 315, 113751 (2020)

    Article  Google Scholar 

  73. C.W. Wang et al., J. Molecular Liquids 321, 114912 (2021)

    Article  Google Scholar 

  74. C.S. Jia et al., Chem. Eng. Sci. 202, 70 (2019)

    Article  Google Scholar 

  75. X.L. Peng et al., Chem. Eng. Sci. 190, 122 (2018)

    Article  Google Scholar 

  76. C.S. Jia et al., Chem. Eng. Sci. 190, 1 (2018)

    Article  Google Scholar 

  77. B. Tang et al., J. Molecular Struct. 1199, 126958 (2020)

    Article  Google Scholar 

  78. J. Meng (ed) (2016) Relativistic Density Functional for Nuclear structure (International Review of Nuclear Physics vol 10)(World Scientific, Singapore)

  79. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  80. C.L. Pekeris, Phys. Rev. 45, 98 (1934)

    Article  ADS  Google Scholar 

  81. R.R. Reddy, T.V.R. Rao, R. Viswanath, Astrophys. Space Sci. 189, 29 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Chenaghlou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenaghlou, A., Aghaei, S. & Ghadirian Niari, N. The solution of D+1-dimensional Dirac equation for diatomic molecules with the Morse potential. Eur. Phys. J. D 75, 139 (2021). https://doi.org/10.1140/epjd/s10053-021-00156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00156-x

Navigation