Skip to main content
Log in

Modulating the spin-dependent electronic structures and transport properties of zigzag \(\upalpha \)-2 graphyne nanoribbons by boron doping

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigated the electronic structure and spin-dependent transport properties of zigzag \(\upalpha \)-2 graphyne nanoribbons (Z\(\upalpha \)-2GYNRs) with boron (B) atomic doping by using first-principle non-equilibrium Green’s function method. We observed a spin-polarized semi-metallic electronic structure with an acetylenic (sp hybridized) carbon at the edge which is substituted by boron. We also calculated the spin-dependent transport properties and observed both unidirectional and bidirectional spin-filtering effects. Our results demonstrated boron substitution as an effective method for modulating the spin-dependent electronic property of the Z\(\upalpha \)-2GYNRs. This work would provide a new scheme for designing graphyne-based spintronics devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The results of this work are carried out by Quantum ATK based on the first-principle method, and all data are shown as table and figures in text.]

References

  1. N. Tombros et al., Nature 448, 571 (2007)

    Article  ADS  Google Scholar 

  2. A.J. Wirth-Lima, P.P. Alves-Sousa, W. Bezerra-Fraga, Chin. Phys. B 29, 037801 (2020)

    Article  ADS  Google Scholar 

  3. S. Gao et al., Chin. Phys. Lett. 33, 083101 (2016)

    Article  ADS  Google Scholar 

  4. W. Han et al., J. Magn. Magn. Mater. 324, 369 (2012)

    Article  ADS  Google Scholar 

  5. N. Gorjizadeh et al., Phys. Rev. B 78, 155427 (2008)

    Article  ADS  Google Scholar 

  6. M. Li et al., Phys. Lett. A 384, 126058 (2020)

    Article  Google Scholar 

  7. S. Zhang et al., J. Phys.-Condes. Matter. 32, 175302 (2020)

    Article  ADS  Google Scholar 

  8. D. Peng et al., J. Appl. Phys. 124, 184303 (2018)

    Article  ADS  Google Scholar 

  9. Y.-H. Zhou, J. Zeng, K.-Q. Chen, Carbon 76, 175 (2014)

    Article  Google Scholar 

  10. M. Li et al., Org. Electron. 44, 168 (2017)

    Article  Google Scholar 

  11. L. Cao et al., J. Magn. Magn. Mater. 485, 136 (2019)

    Article  ADS  Google Scholar 

  12. Z. Miao et al., Chin. Phys. B 29, 066101 (2020)

    Article  ADS  Google Scholar 

  13. Y.J. Li et al., Chem. Soc. Rev 43, 2572 (2014)

    Article  Google Scholar 

  14. M. Long et al., ACS Nano. 5, 2593 (2011)

    Article  Google Scholar 

  15. J. Chen et al., J. Phys. Chem. Lett. 4, 1443 (2013)

    Article  Google Scholar 

  16. G. Li et al., Chem. Commun. 46, 3256 (2010)

    Article  ADS  Google Scholar 

  17. R. Majidi, J. Electron. Mater. 47, 2890 (2018)

    Article  Google Scholar 

  18. S.N. Jafari, Y. Hakimi, S. Rouhi, Phys. E 119, 114022 (2020)

    Article  Google Scholar 

  19. D. Zhang et al., J. Magn. Magn. Mater. 498, 166194 (2020)

    Article  Google Scholar 

  20. S. Fotoohi, S. Haji-Nasiri, Phys. E 98, 159 (2018)

    Article  Google Scholar 

  21. S. Haji-Nasiri, S. Fotoohi, Phys. Lett. A 382, 2894 (2018)

    Article  ADS  Google Scholar 

  22. S.G. Shahri, M.R. Roknabadi, R. Radfar, J. Magn. Magn. Mater. 443, 96 (2017)

    Article  ADS  Google Scholar 

  23. Y. Ni et al., Sci. Rep. 6, 25914 (2016)

    Article  ADS  Google Scholar 

  24. A. Mohammadi, Z. Esmaeil, Org. Electron. 61, 334 (2018)

    Article  Google Scholar 

  25. Q. Yue et al., Phys. Rev. B 86, 235448 (2012)

    Article  ADS  Google Scholar 

  26. J. Pan et al., Phys. Rev. B 92, 205429 (2015)

    Article  ADS  Google Scholar 

  27. Z. Yang et al., J. Phys. D-Appl. Phys. 50, 075103 (2017)

    Article  ADS  Google Scholar 

  28. M.-X. Zhai et al., Nanoscale 6, 11121 (2014)

    Article  ADS  Google Scholar 

  29. Y. Li et al., Comput. Mater. Sci. 136, 1 (2017)

    Article  ADS  Google Scholar 

  30. S. Dutta, S.K. Pati, J. Phys. Chem. B 112, 1333 (2008)

    Article  Google Scholar 

  31. E. Cruz-Silva et al., Phys. Rev. B 83, 155445 (2011)

    Article  ADS  Google Scholar 

  32. Z. Li et al., Phys. Rev. Lett. 100, 206802 (2008)

    Article  ADS  Google Scholar 

  33. Z. Zhu et al., Carbon 106, 252 (2016)

    Article  Google Scholar 

  34. X.F. Yang et al., J. Appl. Phys. 116, 124312 (2014)

    Article  ADS  Google Scholar 

  35. R. Ma et al., Phys. Rev. B 94, 055305 (2016)

    Google Scholar 

  36. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  37. M. Brandbyge et al., Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  38. T. Chen et al., Nanotechnology 30, 445703 (2019)

    Article  ADS  Google Scholar 

  39. D. Wu et al., Sci. China Phys. Mech. Astronomy 63, 276811 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support by the National Natural Science Foundation of China (Grant nos. 21673296 and 51932011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengqiu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Peng, D., Xie, X. et al. Modulating the spin-dependent electronic structures and transport properties of zigzag \(\upalpha \)-2 graphyne nanoribbons by boron doping. Eur. Phys. J. B 94, 86 (2021). https://doi.org/10.1140/epjb/s10051-021-00092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00092-0

Navigation