Skip to main content
Log in

Hsp16.3 of mycobacterium tuberculosis in exosomes as a biomarker of tuberculosis

  • Brief Report
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Exosomes are selectively packaged cell-derived vesicles that contain a rich cargo of nucleic acids and proteins. The small heat shock protein, Hsp16.3, is an important capsule protein produced by Mycobacterium tuberculosis (MTB). Exploring the distribution of Hsp16.3 in exosomes is valuable to tuberculosis biomarker development. Our results showed that Hsp16.3 protein overexpressed in cells can be efficiently packaged into exosomes. U937 cells infected with MTB secreted abnormally excessive amounts of Hsp16.3 protein in exosomes. Finally, a substantial number of Hsp16.3 proteins were detected in blood exosomes of tuberculosis patients. The research provides a potential exosome-based tuberculosis biomarker for MTB diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee J, Remold HG, Ieong MH, Kornfeld H (2006) Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J Immunol 176(7):4267–4274. https://doi.org/10.4049/jimmunol.176.7.4267

    Article  CAS  PubMed  Google Scholar 

  2. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628. https://doi.org/10.1146/annurev.micro.53.1.577

    Article  CAS  PubMed  Google Scholar 

  3. Jackett PS, Bothamley GH, Batra HV, Mistry A, Young DB, Ivanyi J (1988) Specificity of antibodies to immunodominant mycobacterial antigens in pulmonary tuberculosis. J Clin Microbiol 26(11):2313–2318. https://doi.org/10.1128/JCM.26.11.2313-2318.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ignatov D, Kondratieva E, Azhikina T, Apt A (2012) Mycobacterium avium-triggered diseases: pathogenomics. Cell Microbiol 14(6):808–818. https://doi.org/10.1111/j.1462-5822.2012.01776.x

    Article  CAS  PubMed  Google Scholar 

  5. Hu Y, Movahedzadeh F, Stoker NG, Coates AR (2006) Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immum 74(2):861–868. https://doi.org/10.1128/IAI.74.2.861-868.2006

    Article  CAS  Google Scholar 

  6. Szilvia B, Caccamo N, Majer G, Mezo G, Dieli F, Hudecz F (2004) In vitro T-cell immunogenicity of oligopeptides derived from the region 92-110 of the 16-kDa protein of Mycobacterium tuberculosis. Biopolymers 76(6):467–476. https://doi.org/10.1002/bip.20153

    Article  CAS  Google Scholar 

  7. Lee BY, Hefta SA, Brennan PJ (1992) Characterization of the major membrane protein of virulent Mycobacterium tuberculosis. Infect Immun 60(5):2066–2074. https://doi.org/10.1128/IAI.60.5.2066-2074.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cunningham AF, Spreadbury CL (1998) Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. Bacteriol 180(4):801–808

    Article  CAS  Google Scholar 

  9. Verbon A, Kuijper S, Jansen HM, Speelman P, Kolk AH (1990) Antigens in culture supernatant of Mycobacterium tuberculosis: epitopes defined by monoclonal and human antibodies. J Gen Microbiol 136(5):955–964. https://doi.org/10.1099/00221287-136-5-955

    Article  CAS  PubMed  Google Scholar 

  10. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172. https://doi.org/10.1084/jem.183.3.1161

    Article  CAS  PubMed  Google Scholar 

  11. Garberi J, Labrador J, Garberi F, Garberi JE, Peneipil J, Garberi M, Scigliano L, Troncoso A (2011) Diagnosis of mycobacterium tuberculosis using molecular biology technology. Asian Pac J Trop Riomed 1(2):89–93. https://doi.org/10.1016/S2221-1691(11)60002-6

    Article  Google Scholar 

  12. Erika L, Carla S, Lorea M, Ibai G, Armesto M, Arestin M, María MC, Angela MA, Araiz M, Marta FM, Charles HL (2016) New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies. IntJ Mol Sci 17(5):627. https://doi.org/10.3390/ijms17050627

    Article  CAS  Google Scholar 

  13. Penfornis P, Vallabhaneni KC, Whitt J, Pochampally R (2016) Extracellular vesicles as carriers of microRNA, proteins and lipids in tumor microenvironment. Int J Cancer 138(1):14–21. https://doi.org/10.1002/ijc.29417 Epub 2015 Jan 23

    Article  CAS  PubMed  Google Scholar 

  14. Olmos S, Stukes S, Ernst JD (2010) Ectopic activation of Mycobacterium tuberculosis-specific CD4+ T cells in lungs of CCR7-/- mice. J Immunol 184(2):895–901. https://doi.org/10.4049/jimmunol.0901230

    Article  CAS  PubMed  Google Scholar 

  15. Singh PP, Smith VL, Karakousis PC, Schorey JS (2012) Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J Immunol 189(2):777–785. https://doi.org/10.4049/jimmunol.1103638

    Article  CAS  PubMed  Google Scholar 

  16. Boukouris S, Mathivanan S (2015) Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl 9(3-4):358–367. https://doi.org/10.1002/prca.201400114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Science and Technology Major Project of China (2017ZX10201301-004), the Beijing Natural Science Foundation (7192038), the National Natural Science Foundation (81902024), the Tongzhou Yunhe Project (YH201807 and YH201921), and the “Beijing Municipal Administration of Hospitals” Ascent Plan (DFL20181601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongde Zhang or Xiaomei Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

Overexpressed Hsp16.3 protein can be packaged into U937 cells secreted exosomes.

Hsp16.3 protein can be detected in plasma exosomes of TB patients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Pan, L., Shen, X. et al. Hsp16.3 of mycobacterium tuberculosis in exosomes as a biomarker of tuberculosis. Eur J Clin Microbiol Infect Dis 40, 2427–2430 (2021). https://doi.org/10.1007/s10096-021-04246-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04246-x

Keywords

Navigation