Skip to main content
Log in

Microstructural analysis and mechanical behavior of TC4 titanium alloy and 304 stainless steel by friction stir lap welding

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The optimization of welding parameters of the welded joints of TC4 titanium alloys/304 stainless steel (TC4/304 SS) by friction stir lap welding (FSLW) based on orthogonal test was researched. The results show that under low heat input (low rotating speed and high traversing speed), there was a damaging defect in stir zone (SZ) and cracks started from the defect under the tension. Under high heat input (high rotating speed and low traversing speed), the intermetallic compounds were barely formed, and the cracks formed from 304 SS blocks existed in thermal mechanically affected zone of TC4 titanium alloys (TMAZTC4), eventually obtaining the highest fracturing load. However, under middle heat input (middle rotating speed and low traversing speed), the intermetallic compounds and the maximum hardness were found at the interface, and cracks started from these compounds under the tension, getting a middle fracture load. In conclusion, the joints with good properties can be obtained with high rotating speed and low traversing speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y-m Y, Zhang Z, S-d J, Z-w L, D-j Y (2018) Friction stir lap welding of 6061-T6 Al to Ti-6Al-4V using low rotating speed. Int J Adv Manuf Technol 96(5):2285–2291

    Google Scholar 

  2. Z-w C, Yazdanian S (2015) Microstructures in interface region and mechanical behaviours of friction stir lap Al6060 to Ti–6Al–4V welds. Mater Sci Eng A 634:37–45

    Article  Google Scholar 

  3. Guo M-x, Qi Y, M-r L, Chen P, Wang Z-y (2020) Corrosion behavior of 304 stainless steel exposed to a simulated salt lake atmosphere. Acta Metall Sin (Engl Lett) 33:857–870

    Article  CAS  Google Scholar 

  4. Liu M, D-l D, S-l J, M-y L, Li S (2018) Tribocorrosion behavior of 304 stainless steel in 0.5 mol/L sulfuric acid. Acta Metall Sin (Engl Lett) 31(10):1049–1058

    Article  CAS  Google Scholar 

  5. Kokawa H, Park SHC, Sato YS, Okamoto K, Hirano S, Inagaki M (2005) Microstructures in friction stir welded 304 austenitic stainless steel. Welding in the world 49:34–40

    Article  CAS  Google Scholar 

  6. Da Silva YC, Oliveira Júnior FJV, Dos Santos JF, Marcondes F, Silva C (2020) Numerical investigation of the influence of FSW parameters on the heat and masstransfer of austenitic stainless steels. Welding in the world 64:2019–2032

    Article  Google Scholar 

  7. Wang X-h, Yang Z-l, Zheng W, Shi Q-y XB, C-s Z (2019) The influence of copper on the stress corrosion cracking of 304 stainless steel. Appl Surf Sci 478:492–498

    Article  CAS  Google Scholar 

  8. Yang J-j, Wang Y, F-z L, W-p H, G-y J, Wang Z-m (2019) Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints. J Mater Sci Technol 35:1817–1824

    Article  Google Scholar 

  9. C-x R, Wang Q, Z-j Z, Yang H-j, Z-f Z (2019) Enhanced tensile and bending yield strengths of 304 stainless steel and H62 brass by surface spinning strengthening. Mater Sci Eng A 754:593–601

    Article  Google Scholar 

  10. Zhang Y, X-y Y, Wang J-z, F-y Y (2014) Influence of microstructure evolution on tribocorrosion of 304SS in artificial seawater. Corros Sci 88:423–433

    Article  CAS  Google Scholar 

  11. Yoon S, Ueji R, Fujii H (2015) Effect of rotation rate on microstructure and texture evolution during friction stir welding of Ti–6Al–4V plates. Mater Charact 106:352–358

    Article  CAS  Google Scholar 

  12. Y-n W, J-l L, J-t X, Huang F, F-s Z, S-h R (2012) Joining aluminum to titanium alloy by friction stir lap welding with cutting pin. Mater Charact 71:1–5

    Article  Google Scholar 

  13. Lu Y-x, Li X (2020) Mechanical properties and microstructure of flash-butt CT-90 steel weldet joint. Materials Testing 62:299–303

    Article  CAS  Google Scholar 

  14. Lu Y-x, Li X (2017) Influence of surface microstructure and chemical compositions on grooving corrosion of carbon steel welded joints. Materials Testing 59:957–964

    Article  CAS  Google Scholar 

  15. Lu Y-x, H-y J (2017) Corrosion behavior of pipeline steel welds in simulated produced water with different CO2 partial pressures under high temperature. Materials Testing 59(4):348–354

    Article  CAS  Google Scholar 

  16. Lu Y-x, H-y J (2020) Early corrosion stage of welded carbon steel joints in CO2-saturated oilfield water. Materials Testing 62(2):129–137

    Article  Google Scholar 

  17. X-h H, Dong H-g, Li S, Xu X-x, Li P (2018) Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire. J Mater Process Technol 257:88–100

    Article  Google Scholar 

  18. X-h H, Li P, Y-q X, Dong H-g, Wang P-x, D-j Y (2019) Microstructure and mechanical properties of dissimilar TC4 titanium alloy/304 stainless steel joint using copper filler wire. Metall Mater Trans A 58:688–703

    Google Scholar 

  19. Mou G, X-m H, Shen C, Wang M (2020) Effects of thermal distribution strategy on a Ti-6Al-4V/304L dissimilar joint fabricated using the variable polarity cold metal transfer arc-brazing method. Mater Des 191:108619

    Article  CAS  Google Scholar 

  20. Huang YX, Wan L, Meng XC, Xie YM, Lv ZL, Zhou L (2018) Probe shape design for eliminating the defects of friction stir lap welded dissimilar materials. J Manuf Process 35:420–427

    Article  Google Scholar 

  21. Mahto RP, Kumar R, Pal SK, Panda SK (2018) A comprehensive study on force, temperature, mechanical properties and micro-structural characterizations in friction stir lap welding of dissimilar materials (AA6061-T6 & AISI304). J Manuf Process 31:624–639

    Article  Google Scholar 

  22. Yu M-r, H-y Z, Z-h J, Guo F, Zhou L, X-g S (2019) Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds. J Mater Process Technol 270:274–284

    Article  CAS  Google Scholar 

  23. Zhou L, Yu M-r, Z-h J, Guo F, H-y Z, Y-x H, X-g S (2018) Influence of rotation speed on microstructure and mechanical properties of friction stir lap welded joints of AA 6061 and Ti6Al4V alloys. Metall Mater Trans A 50:733–745

    Article  Google Scholar 

  24. Xu M-j, B-s L, Y-q Z, Wang Z-m, Dong Z-b (2020) Direct joining of thermoplastic ABS to aluminium alloy 6061-T6 using friction lap welding. Sci Technol Weld Join 25(5):391–397

    Article  CAS  Google Scholar 

  25. H-j L, Hu Y-y, Y-x P, Dou C, Wang Z-g (2016) The effect of interface defect on mechanical properties and its formation mechanism in friction stir lap welded joints of aluminium alloys. J Mater Process Technol 238:244–254

    Article  Google Scholar 

  26. Chen D, J-l L, H-x Z, Tan Z-j, J-t X (2020) Effect of submillimeter variation in plunge depth on microstructure and mechanical properties of FSLW 2A12 aluminum alloy joints. Acta Metall Sin (Engl Lett) 33:165–171

    Article  CAS  Google Scholar 

  27. Saad BA, Mohammad WD, Daniel JH, Muhammad AW, Ayman MO, T WL (2016) Impact of friction stir welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints. Acta Metall Sin (Engl Lett) 29(9):869–883

  28. Saad BA, Mohammad WD, Daniel JH, Muhammad AW, Ayman MO, T WL (2018) A fully coupled thermomechanical model of friction stir welding (FSW) and numerical studies on process parameters of lightweight aluminum alloy joints. Acta Metall Sin (Engl Lett) 31:1–18

  29. Li B, Shen Y-f, Luo L, Hu W-y (2016) Effects of processing variables and heat treatments on Al/Ti-6Al-4V interface microstructure of bimetal clad-plate fabricated via a novel route employing friction stir lap welding. Mater Charact 658:904–913

    CAS  Google Scholar 

  30. Campo KN, Campanelli LC, Bergmann L, Dos Santos JF, Bolfarini C (2014) Microstructure and interface characterization of dissimilar friction stir welded lap joints between Ti–6Al–4V and AISI 304. Mater Des 56:139–145

    Article  CAS  Google Scholar 

  31. Fazel-Najafabadi M, Kashani-Bozorg SF, Zarei-Hanzaki A (2011) Dissimilar lap joining of 304 stainless steel to CP-Ti employing friction stir welding. Mater Des 32(4):1824–1832

    Article  CAS  Google Scholar 

  32. Buffa G (2016) Joining Ti6Al4V and AISI 304 through friction stir welding of lap joints: experimental and numerical analysis. Int J Mater Form 9(1):59–70

    Article  Google Scholar 

  33. Wang H-d, Wang K-s, Wang P, L-y H, Peng P, Yu H-l (2019) Microstructure and mechanical properties of dissimilar friction stir welded type 304 austenitic stainless steel to Q235 low carbon steel. Mater Charact 155:109803

    Article  CAS  Google Scholar 

  34. H-j L, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy. J Mater Sci Lett 22(15):1061–1063

    Article  Google Scholar 

  35. H-j L, Fujii H, Maeda M, Nogi K (2003) Heterogeneity of mechanical properties of friction stir welded joints of 1050-H24 aluminum alloy. J Mater Sci Lett 22(6):441–444

    Article  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial supported by State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology (Grant No.: AWJ-21M21), Natural Science Basic Research Program of Shaanxi (Program No.: 2020JQ-768, 2021JQ-594), and National Natural Science Foundation of China (No. 51975469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxin Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Xu, X., Zhang, B. et al. Microstructural analysis and mechanical behavior of TC4 titanium alloy and 304 stainless steel by friction stir lap welding. Weld World 65, 1915–1930 (2021). https://doi.org/10.1007/s40194-021-01133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01133-z

Keywords

Navigation