Skip to main content
Log in

Phase Equilibria in the Carbide Region of Iron–Carbon Phase Diagram

  • Published:
Steel in Translation Aims and scope

Abstract

The main evolution stages of the phase diagram of Fe–C in the carbide region (on the right from the cementite line) is a recently discussed theoretical topic that has been considered. It has been determined that previously isolated ε-Fe2C, χ-Fe5C2, and g-Fe7C3 carbides (except for cementite Θ-Fe3C) are nonstoichiometric compounds. Thus, they are variable composition phases containing stoichiometric composition or second-type interstitial solid solutions based on daltonides and berthollides. It has been stated that the iron–cementite phase diagram can be identified as the iron–ε-Fe2C carbide phase diagram in the concentration range of 0–9.7% C. The following phase transformations are introduced to the diagram: reaction of nonvariant syntectic equilibrium of cementite Θ-Fe3C crystallization; reaction of peritectic equilibrium of carbide χ-Fe5C2 crystallization; low-temperature peritectoid transformation of carbide, at which solid solutions of ferrite and cementite form solid solution possessing broad homogeneity range based on ε-carbide Fe2C berthollide. It has been shown that the carbide phases represent a uniform isomorphous quasi-carbide solid solution, while the carbide phase crystallizes in the form of the carbide phase mixture as quasi-eutectics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Iron monoxide characterized by lattice defects of bcc lattice, which is described by Fe1–xO formula. It represents nonstoichiometric compound with deficiency of iron atoms.).

  2. Mineralogical name of cementite.

REFERENCES

  1. Tyrkiel, E., Wykres Żelazo-Węgiel w Rozwoju Historycznym, Warsaw: Zakład Narod. im. Ossolińskich, 1963.

  2. Sil’man, G.I., Sistema zhelezo-uglerod (Iron-Carbon System), Bryansk: Bryansk. Gos. Inzh.-Tekhnol. Akad., 2007.

  3. Zhukov, A.A., Geomtericheskaya termodinamika splavov zheleza (Geometric Thermodynamics of Iron Alloys), Moscow: Metallurgiya, 1979, 2nd ed.

  4. Bannykh, O.A., Budberg, P.B., Alisova, S.P., et al., Diagrammy sostoyaniya dvoinykh i mnogokomponentnykh sistem na osnove zheleza (Phase Diagrams of Iron-Containing Binary and Multicomponent Systems), Moscow: Metallurgiya, 1986.

  5. Gulyaev, A.P., On the iron-carbon diagram, Met. Sci. Heat Treat., 1990, vol. 32, no. 7, pp. 493–494.

    Article  Google Scholar 

  6. Jang, J.H., Kim, I.G., and Bhadeshia, H.K.D., ε-Carbide in alloy steels: first-principles assessment, Scr. Mater., 2010, vol. 63, pp. 121–123.

    Article  CAS  Google Scholar 

  7. Hiroyuki, O., The C–Fe (carbon-iron) system, J. Phase Equilib., 1992, vol. 13, no. 5, pp. 543–565.

    Article  Google Scholar 

  8. Zhukov, A.A., Phase diagram of alloys of the system Fe–C, Met. Sci. Heat Treat., 1988, vol. 30, no. 1, pp. 249–255.

    Article  Google Scholar 

  9. Sil’man, G.I., Refinement of the Fe–C diagram on the basis of results of a thermodynamic analysis and generalization of data for Fe–C and Fe–C–Cr systems, Met. Sci. Heat Treat., 1997, vol. 39, no. 11, pp. 451–456.

    Article  Google Scholar 

  10. Zhukov, A.A., Snezhnoi, R.L., Shterenberg, L.E., et al., Iron-diamond system state diagram, Dokl. Akad. Nauk SSSR, 1973, vol. 211, no. 1, pp. 145–147.

    CAS  Google Scholar 

  11. Kosolapova, T.Ya., Karbidy (Carbides), Moscow: Metallurgiya, 1968.

    Google Scholar 

  12. Zhukov, A.A., Shterenberg, L.E., Shalashov, V.A., et al., Pseudohexagonal iron carbide Fe7C3 and eutectic Fe3C–Fe7C3 in the Fe–C system, Izv. Akad. Nauk SSSR, Met., 1973, no. 1, pp. 181–184.

  13. Zhukov, A.A. and Snezhnoi, R.L., The shape of the liquidus curve in the melting region of cementite on the iron-diamond state diagram, Izv. Akad. Nauk SSSR, Met., 1976, no. 3, pp. 192–199.

  14. Kulikov, I.S., Termodinamika karbidov i nitridov: spravohnoe izdanie (Thermodynamics of Carbides and Nitrides: Handbook), Chelyabinsk: Metallurgiya, 1988.

  15. Vysokotemperaturnye karbidy (High-Temperature Carbides), Samsonov, G.V., Ed., Kiev: Naukova Dumka, 1975.

    Google Scholar 

  16. Gavriulik, V.G. and Theisesn, W., Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment, Acta Mater., 2013, vol. 61, pp. 1705–1715.

    Article  Google Scholar 

  17. Kundu, S. and Bhadeshia, H. K.D.H., Crystallographic texture and intervening transformations, Scr. Mater., 2007, vol. 57, pp. 869–872.

    Article  CAS  Google Scholar 

  18. Toth, L.E., Transition Metal Carbides and Nitrides, Amsterdam: Elsevier, 1971.

    Google Scholar 

  19. Vysokotemperaturnye karbidy (High-Temperature Carbides), Samsonov, G.V., Ed., Kiev: Naukova Dumka, 1975.

    Google Scholar 

  20. Samsonov, G.V., Kosolapova, T.Ya., Gnesin, G.G., et al., Karbidy i splavy na ikh osnove (Carbides and Alloys Based on Them), Kiev: Naukova Dumka, 1976.

  21. Wicks, C.E. and Block, F.E., Thermodynamic Properties of 65 Elements: Their Oxides, Halides, Carbides and Nitrides, Washington: US Gov. Printing Off., 1963.

    Google Scholar 

  22. Bhadeshia, H.K.D.H., Cementite, Int. Mater. Rev., 2020, vol. 65, no. 1, pp. 1–27.

    Article  CAS  Google Scholar 

  23. Litasov, K.D., Popov, Z.I., Gavryushkin, P.N., et al., First-principles calculations of the equations of state and relative stability of iron carbides at the Earth’s core pressures, Russ. Geol. Geophys., 2015, vol. 56, nos. 1–2, pp. 164–171.

    Article  Google Scholar 

  24. Bataleva, Yu.V., Palyanov, Yu.N., Borzdov, Yu.M., et al., Conditions for diamond and graphite formation from iron carbide at the PT parameters of lithospheric mantle, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 176–189.

    Article  Google Scholar 

  25. Lomaeva, S.F., Mechanisms of the formation of the structure, phase composition, and properties of iron-based nanosystems during mechanical activation and organic media, Extended Abstract of Doctoral (Phys.-Math.) Dissertation, Izhevsk: Inst. Phys. Technol., Ural. Otd., Ross. Akad. Nauk, 2007.

  26. Barinov, V.A., Tsurin, V.A., Kazantsev, V.A., and Surikov, V.T., Carbonization of α-Fe upon mechanical alloying, Phys. Met. Metallogr., 2014, vol. 115, no. 1, pp. 53–68.

    Article  Google Scholar 

  27. Barinov, V.A., Kazantsev, V.A., and Surikov, V.T., Temperature investigations of mechanosynthesized cementite, Phys. Met. Metallogr., 2014, vol. 115, no. 6, pp. 576–585.

    Article  Google Scholar 

  28. Barinov, V.A., Protasov, A.V., and Surikov, V.T., Studying mechanosynthesized Hägg carbide (χ‑Fe5C2), Phys. Met. Metallogr., 2015, vol. 116, no. 8, pp. 791–801.

    Article  Google Scholar 

  29. Barinov, V.A., Tsurin, V.A., and Surikov, V.T., Study of mechanically synthesized carbide Fe7C3, Phys. Met. Metallogr., 2010, vol. 110, no. 5, pp. 474–484.

    Article  Google Scholar 

  30. Voronin, V.I., Berger, I.F., Gornostyrev, Yu.N., et al., Composition of cementite in the dependence on the temperature. In situ neutron diffraction study and ab initio calculations, JETP Lett., 2010, vol. 91, no. 3, pp. 143–146.

    Article  CAS  Google Scholar 

  31. Tsementit v uglerodistykh stalyakh: kollektivnaya monografiya (Cementite in Carbon Steels: Collective Monograph), Schastlivtsev, V.M., Ed., Yekaterinburg: Uzh.-Metod. Tsentr, UPI, 2017.

  32. Noskov, F.M., Kveglis, L.I., and Leskov, M.B., Strukturoobrazovanie v zone kontakta metallov pri sovmestnoi plasticheskoi deformatsii (Structuring in the Contact Area of Metals during Combined Plastic Deformation), Krasnoyarsk: Sib. Fed. Univ., 2019.

  33. Volkov, V.A., Ul’yanov, A.I., Chulkina, A.A., and El’kin, I.A., Phase formation mechanisms in the mechanosynthesis of Fe–C alloys, Khim. Fiz. Mezoskop., 2018, vol. 20, no. 4, pp. 502–507.

    CAS  Google Scholar 

  34. Zalkin, V.M. and Kraposhin, V.S., Structure of iron-carbon melts. About stability of cementite in melts, Met. Sci. Heat Treat., 2010, vol. 52, no. 1, pp. 3–6.

    Article  CAS  Google Scholar 

  35. Zalkin, V.M., On the theory of eutectic alloys and presentation of the theory in textbooks on physical metallurgy, Met. Sci. Heat Treat., 2009, vol. 51, no. 3, pp. 153–159.

    Article  CAS  Google Scholar 

  36. Gulyaev, A.P., On the iron-carbon diagram, Met. Sci. Heat Treat., 1990, vol. 32, no. 7, pp. 493–494.

    Article  Google Scholar 

  37. Davydov, S.V., Low-temperature carbide transformation in pearlite of medium-carbon steels, Steel Transl., 2020, vol. 50, no. 9, pp. 639–647.

    Article  Google Scholar 

  38. Okishev, K.Yu. and Mirzaev, D.A., Possibile redistribution of carbon atoms in the cementite lattice, Vestn. Yuzh.-Ural Gos. Univ., Ser. Metall., 2011, vol. 17, no. 36, pp. 56–60.

    Google Scholar 

  39. Okishev, K.Yu. and Mirzaev, D.A., Pores in the crystal lattice of cementite and the position of carbon atoms, Vestn. Yuzh.-Ural Gos. Univ., Ser. Matem., Fiz., Khim., 2003, vol. 3, no. 6, pp. 79–85.

    Google Scholar 

  40. Schastlivtsev, V.M., Yakovleva, I.L., Mirzaev, D.A., and Okishev, K.Yu., On the possible positions of carbon atoms in the cementite lattice, Phys. Met. Metallogr., 2003, vol. 96, no. 3, pp. 313–320.

    Google Scholar 

  41. Medvedeva, N.I., Kar’kina, L.E., and Ivanovskii, A.L., Effects of atomic disordering and nonstoichiometry in the carbon sublattice on the energy-band structure of cementite, Phys. Met. Metallogr., 2003, vol. 96, no. 5, pp. 452–456.

    Google Scholar 

  42. Lord, O.T., Walter, M.J., Dasgupta, R., et al., Melting in the Fe–C system to 70 GPa, Earth Planet. Sci. Lett., 2009, vol. 284, pp. 157–167.

    Article  CAS  Google Scholar 

  43. Nakajima, Y., Takahashi, E., Suzuki, T., and Funakoshi, K., “Carbon in the core” revisited, Phys. Earth Planet. Inter., 2009, vol. 174, pp. 202–211.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Davydov.

Additional information

Translated by A. Muravev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.V. Phase Equilibria in the Carbide Region of Iron–Carbon Phase Diagram. Steel Transl. 50, 888–896 (2020). https://doi.org/10.3103/S0967091220120025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091220120025

Keywords:

Navigation