Skip to main content
Log in

Phase Change Materials and Power Engineering

  • HEAT AND MASS TRANSFER, PROPERTIES OF WORKING FLUIDS AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The review contains information on the properties of phase-change materials (PCM) and the possibilities of their use as the basis of thermal energy storage. Special attention is given to PCMs with a phase transition temperature ranging between 20 and 80°C since such materials can be effectively used to reduce temperature variations in residential and industrial rooms. Thus, the application of PCMs in the construction industry enables one to considerably reduce the power consumption and reduce the environmental impact of industrial facilities. Thermophysical characteristics of the main types of PCMs are presented. The heat balance for a room with walls made of PCM-added materials is estimated. The predictions demonstrate that such structures can stabilize the temperature in practical applications as a result of usage of such materials. The potential of wide application of PCMs as a basis for thermal energy storage is limited due to very low conductivity (less than 1 W/(m K)) specific for these materials. Hence, the option of increasing the material conductivity by adding some carbon nanotubes whose thermal conductivity is four to five orders of magnitude greater than that of the base material is examined. The numerical predictions of the heat-conduction enhancement in a PCM doped with carbon nanotubes and the preliminary experiments indicate that a PCM with approximately 20% carbon nanotubes can enhance the material heat conductivity by two to four times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. A consistent theory is a theory that does not contain empirical assumptions.

  2. The Brunauer–Emmett–Teller (BET) is a method of mathematical description of physical adsorption based on the theory of polymolecular (multilayer) adsorption. The name of the method is an abbreviation of the names of the authors (Brunauer, Emmett, and Teller) who proposed this method.)

  3. Chemical deposition from the gas phase occurs in a chemical vapor deposition (CVD) reactor).

REFERENCES

  1. N. P. Sharifi, A. A. N. Sakulich, and A. R. Sakulich, “Application of phase change materials in gypsum boards to meet building energy conservation goals,” Energy Build. 138, 455–467 (2017). https://doi.org/10.1016/j.enbuild.2016.12.046

    Article  Google Scholar 

  2. M. A. Medina, E. J. B. King, and M. Zhang, “On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs),” Energy 33, 667–678 (2008). https://doi.org/10.1016/j.energy.2007.11.003

    Article  Google Scholar 

  3. R. Vicente and T. Silva, “Brick masonry walls with PCM macrocapsules: An experimental approach,” Appl. Therm. Eng. 67, 24–34 (2014). https://doi.org/10.1016/j.applthermaleng.2014.02.069

    Article  Google Scholar 

  4. K. Peippo, P. Kauranen, and P. D. Lund, “A multicomponent PCM wall optimized for passive solar heating,” Energy Build. 17, 259–270 (1991). https://doi.org/10.1016/0378-7788(91)90009-R

    Article  Google Scholar 

  5. M. Kenisarin and K. Mahkamov, “Passive thermal control in residential buildings using phase change materials,” Renewable Sustainable Energy Rev. 55, 371–398 (2016). https://doi.org/10.1016/j.rser.2015.10.128

    Article  Google Scholar 

  6. Y. Fang, J. Nin, and S. Deng, “Numerical analysis for maximizing effective energy storage capacity of thermal energy storage system by enhancing heat transfer in PCM,” Energy Build. 160, 10–18 (2018). https://doi.org/10.1016/j.enbuild.2017.12.006

    Article  Google Scholar 

  7. R. S. Abdulrahman, F. A. Ibrahim, and S. F. Dakhil, “Development of paraffin wax as phase change material based latent heat storage in heat exchanger,” Appl. Therm. Eng. 150, 193–199 (2019). https://doi.org/10.1016/j.applthermaleng.2018.12.149

    Article  Google Scholar 

  8. W. Q. Li, Z. G. Qu, Y. L. He, and Y. B. Tao, “Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials,” J. Power Sources 255, 9–15 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.006

    Article  Google Scholar 

  9. L. Zhu, Y. Yang, S. Chen, and Y. Sun, “Numerical study on the thermal performance of lightweight temporary building integrated with phase change materials,” Appl. Therm. Eng. 138, 35–47 (2018). https://doi.org/10.1016/j.applthermaleng.2018.03.103

    Article  Google Scholar 

  10. N. Zhu, Z. Ma, and S. Wang, “Dynamic characteristics and energy performance of buildings using phase change materials: A review,” Energy Convers. Manage. 50, 3169–3181 (2009). https://doi.org/10.1016/j.enconman.2009.08.019

    Article  Google Scholar 

  11. Y. Kusama and Y. Ishidoya, “Thermal effects of a novel phase change material (PCM) plaster under different insulation and heating scenarios,” Energy Build. 141, 226–237 (2017). https://doi.org/10.1016/j.enbuild.2017.02.033

    Article  Google Scholar 

  12. S.-M. Wang, P. Matiašovsky, P. Mihálka, and C.-M. Lai, “Experimental investigation of the daily thermal performance of a mPCM honeycomb wallboard,” Energy Build. 159, 419–425 (2018). https://doi.org/10.1016/j.enbuild.2017.10.080

    Article  Google Scholar 

  13. V. Yu. Borodulin and M. I. Nizovtsev, “Heat-inertial properties of walls of lightweight thermal insulation with phase change materials,” J. Phys.: Conf. Ser. 1105, 012108 (2018). https://doi.org/10.1088/1742-6596/1105/1/012108

    Article  Google Scholar 

  14. B. Zalba, J. M. Marín, L. F. Cabeza, and H. Mehling, “Free-cooling of buildings with phase change materials,” Int. J. Refrig. 27, 839–849 (2004). https://doi.org/10.1016/j.ijrefrig.2004.03.015

    Article  Google Scholar 

  15. R. Kandasamy, X.-Q. Wang, and A. S. Mujumdar, “Application of phase change materials in thermal management of electronics,” Appl. Therm. Eng. 27, 2822–2832 (2007). https://doi.org/10.1016/j.applthermaleng.2006.12.013

    Article  Google Scholar 

  16. S. Gharbi, S. Harmand, and S. B. Jabrallah, “Experimental comparison between different configurations of PCM based heat sinks for cooling electronic components,” Appl. Therm. Eng. 87, 454–462 (2015). https://doi.org/10.1016/j.applthermaleng.2015.05.024

    Article  Google Scholar 

  17. M. Temirel, H. Hu, H. Shabgard, P. Boettcher, M. McCarthy, and Y. Sun, “Solidification of additive-enhanced phase change materials in spherical enclosures with convective cooling,” Appl. Therm. Eng. 111, 134–142 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.090

    Article  Google Scholar 

  18. M. M. Kenisarin, “Short-term storage of solar energy. 1: Low temperature phase-change materials,” Appl. Sol. Energy 29 (2), 48–65 (1993).

    Google Scholar 

  19. L. Royon, L. Karim, and A. Bontemps, “Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings,” Energy Build. 82, 385–390 (2014). https://doi.org/10.1016/j.enbuild.2014.07.012

    Article  Google Scholar 

  20. Y.-J. Chiu, W.-M. Yan, H.-C. Chiu, J.-H. Jang, and G.-Y. Ling, “Investigation on the thermophysical properties and transient heat transfer characteristics of composite phase change materials,” Int. Commun. Heat Mass Transfer 98, 223–231 (2018).

    Article  Google Scholar 

  21. A. Tokuç, T. Başaran, and S. C. Yesügey, “An experimental and numerical investigation on the use of phase change materials in building elements: The case of a flat roof in Istanbul,” Energy Build. 102, 91–104 (2015). https://doi.org/10.1016/j.enbuild.2015.04.039

    Article  Google Scholar 

  22. C. J. Ho, C. P. Chen, and C.-M. Lai, “The effects of geometric parameters on the thermal performance of a rectangular natural circulation loop containing PCM suspensions,” Numer. Heat Transfer, Part A 70, 1313–1329 (2016). https://doi.org/10.1080/10407782.2016.1243966

    Article  Google Scholar 

  23. E. N. Vasil’ev and V. A. Derevyanko, “The dynamics of phase changes in a heat storage of thermal control system for onboard radio-electronic equipment,” Thermophys. Aeromech. 25, 461–467 (2018).

    Article  Google Scholar 

  24. M. I. Nizovtsev, V. Yu. Borodulin, V. N. Letushko, V. I. Terekhov, V. A. Poluboyarov, and L. K. Berdnikova, “Heat transfer in a phase change material under constant heat flux,” Thermophys. Aeromech. 26, 313–324 (2019).

    Article  Google Scholar 

  25. Y. Kozak and G. Ziskind, “Novel enthalpy method for modeling of PCM melting accompanied by sinking of the solid phase,” Int. J. Heat Mass Transfer 112, 568–586 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.088

    Article  Google Scholar 

  26. S. M. Usachev, V. T. Pertsev, and S. Khav’yarimana, “Heat storage materials for building materials and structures,” Nauchn. Zh. Stroit. Arkhit., No. 2 (50), 68–75 (2018).

  27. I. O. Aimbetova, U. S. Suleimenov, M. A. Kambarov, E. N. Kalshabekova, and R. A. Ristavletov, “Thermophysical properties of phase transparent heat-storing materials used in construction,” Usp. Sovrem. Estestvozn., No. 12, 9–13 (2018).

  28. A. Abhat, “Low temperature latent heat thermal energy storage: Heat storage materials,” Sol. Energy 30, 313–332 (1983). https://doi.org/10.1016/0038-092X(83)90186-X

    Article  Google Scholar 

  29. G. A. Lane, Solar Heat Storage, Vol. II: Latent Heat Material (CRC, Boca Raton, Fla., 1983).

  30. A. M. Khudhair and M. M. Farid, “A review on energy conservation in building applications with thermal storage by latent heat using phase change materials,” Energy Convers. Manage. 45, 263–275 (2004). https://doi.org/10.1016/S0196-8904(03)00131-6

    Article  Google Scholar 

  31. V. A. A. Raj and R. Velraj, “Review on free cooling of buildings using phase change materials,” Renewable Sustainable Energy Rev. 14, 2819–2829 (2010). https://doi.org/10.1016/j.rser.2010.07.004

    Article  Google Scholar 

  32. L. F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. I. Fernández, “Materials used as PCM in thermal energy storage in buildings: A review,” Renewable Sustainable Energy Rev. 15, 1675–1695 (2011). https://doi.org/10.1016/j.rser.2010.11.018

    Article  Google Scholar 

  33. I. Dincer and M. A. Rosen, Thermal Energy Storage. Systems and Applications (Wiley, Chichester, 2011).

    Google Scholar 

  34. F. Souayfane, F. Fardoun, and P.-H. Biwole, “Phase change materials (PCM) for cooling applications in buildings: A review,” Energy Build. 129, 396–431 (2016). https://doi.org/10.1016/j.enbuild.2016.04.006

    Article  Google Scholar 

  35. R. Zeinelabdein, S. Omer, and G. Gan, “Critical review of latent heat storage system for free cooling in buildings,” Renewable Sustainable Energy Rev. 82, 2843–2868 (2018). https://doi.org/10.1016/j.rser.2017.10.046

    Article  Google Scholar 

  36. J. Jaguemont, N. Omar, P. Van den Bossche, and J. Mierlo, “Phase-change materials (PCM) for automotive applications: A review,” Appl. Therm. Eng. 132, 308–320 (2018). https://doi.org/10.1016/j.applthermaleng.2017.12.097

    Article  Google Scholar 

  37. A. V. Eletskii, “Transport properties of carbon nanotubes,” Phys.-Usp. 52, 209–224 (2009). https://doi.org/10.3367/UFNe.0179.200903a.0225

    Article  Google Scholar 

  38. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, “Graphene: Fabrication methods and thermophysical properties,” Phys.-Usp. 54, 227–258 (2011). https://doi.org/10.3367/UFNe.0181.201103a.0233

    Article  Google Scholar 

  39. F. Incropera, Introduction to Heat Transfer, 5th ed. (Wiley, Hoboken, N. J., 2005).

    Google Scholar 

  40. S. Bretsznajder, Prediction of Transport and Other Physical Properties of Fluids (Wydawnictwa Naukowo-Techniczne, Warsaw, 1962; Khimiya, Leningrad, 1966; Pergamon, Oxford, 1971).

  41. L. Han, X. Jia, Z. Li, Z. Yang, G. Wang, and G. Ning, “Effective encapsulation of paraffin wax in carbon nanotube agglomerates for a new shape-stabilized phase change material with enhanced thermal-storage capacity and stability,” Ind. Eng. Chem. Res. 57, 13026–13035 (2018). https://doi.org/10.1021/acs.iecr.8b02159

    Article  Google Scholar 

  42. G. Fredi, A. Dorigato, L. Fambri, and A. Pegoretti, “Wax confinement with carbon nanotubes for phase changing epoxy blends,” Polymers 9, 405 (2017). https://doi.org/10.3390/polym9090405

    Article  Google Scholar 

  43. J. F. Wang, H. Q. Xie, and Z. Xin, “Thermal properties of paraffin based composites containing multi-walled carbon nanotubes,” Thermochim. Acta 488, 39–42 (2009). https://doi.org/10.1016/j.tca.2009.01.022

    Article  Google Scholar 

  44. B. W. Xu and Z. J. Li, “Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites,” Energy 72, 371–380 (2014). https://doi.org/10.1016/j.energy.2014.05.049

    Article  Google Scholar 

  45. Y. J. Zhong, Q. G. Guo, S. Z. Li, J. L. Shi, and L. Liu, “Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage,” Sol. Energy Mater. Sol. Cells 94, 1011–1014 (2010). https://doi.org/10.1016/j.solmat.2010.02.004

    Article  Google Scholar 

  46. M. Mehrali, S. T. Latibari, M. Mehrali, H. S. C. Metselaar, and M. Silakhori, “Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite,” Energy Convers. Manage. 67, 275–282 (2013). https://doi.org/10.1016/j.enconman.2012.11.023

    Article  Google Scholar 

  47. T. Y. Wang, S. F. Wang, L. X. Geng, and Y. T. Fang, “Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network,” Appl. Energy 179, 601–608 (2016). https://doi.org/10.1016/j.apenergy.2016.07.026

    Article  Google Scholar 

  48. J. L. Xiang and L. T. Drzal, “Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material,” Sol. Energy Mater. Sol. Cells. 95, 1811–1818 (2011). https://doi.org/10.1016/j.solmat.2011.01.048

    Article  Google Scholar 

  49. Z. G. Zhang, N. Zhang, J. Peng, X. M. Fang, X. N. Gao, and Y. T. Fang, “Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material,” Appl. Energy 91, 426–431 (2012). https://doi.org/10.1016/j.apenergy.2011.10.014

    Article  Google Scholar 

  50. Z.-P. Liu and R. Yang, “Synergistically-enhanced thermal conductivity of shape-stabilized phase change materials by expanded graphite and carbon nanotube,” Appl. Sci. 7, 574 (2017). https://doi.org/10.3390/app7060574

    Article  Google Scholar 

  51. M. AlMaadeed, S. Labidi, I. Krupa, and M. Karkri, “Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends,” Thermochim. Acta 600, 35–44 (2015). https://doi.org/10.1016/j.tca.2014.11.023

    Article  Google Scholar 

  52. P. Sobolciak, M. Karkri, M. A. Al-Maadeed, and I. Krupa, “Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite,” Renewable Energy 88, 372–382 (2016). https://doi.org/10.1016/j.renene.2015.11.056

    Article  Google Scholar 

  53. W.-L. Cheng, R.-M. Zhang, K. Xie, N. Liu, and J. Wang, “Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties,” Sol. Energy Mater. Sol. Cells 94, 1636–1642 (2010). https://doi.org/10.1016/j.solmat.2010.05.020

    Article  Google Scholar 

  54. M. Xiao, B. Feng, and K. Gong, “Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity,” Energy Convers. Manage. 43, 103–108 (2002). https://doi.org/10.1016/S0196-8904(01)00010-3

    Article  Google Scholar 

  55. Y. Zhang, J. Ding, X. Wang, R. Yang, and K. Lin, “Influence of additives on thermal conductivity of shape-stabilized phase change material,” Sol. Energy Mater. Sol. Cells 90, 1692–1702 (2006). https://doi.org/10.1016/j.solmat.2005.09.007

    Article  Google Scholar 

Download references

Funding

The work was performed under State Assignment no. FSWF-2020-0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Grigor’ev.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, I.S., Dedov, A.V. & Eletskii, A.V. Phase Change Materials and Power Engineering. Therm. Eng. 68, 257–269 (2021). https://doi.org/10.1134/S0040601521040029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601521040029

Keywords:

Navigation