Skip to main content
Log in

Iron(III) Sensors Based on the Fluorescence Quenching of Poly(phenylene ethynylene)s and Iron-Detecting PDMS Pads

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The detection of Fe ions is critical to environmental monitoring and disease diagnosis. We herein report fluorescent conjugated polymers that exhibit fluorescence quenching upon the addition of Fe (III) ions with the total concentration of 2 ppm. The polymer backbone consists of poly(phenylene ethynylene) (PPE) with side-chains bearing triethylene glycols or alkyl groups. The quenching phenomenon was analyzed by the Stern-Volmer equation, and the resulting Stern-Volmer constants show that the alkyl functional PPE presents higher sensitivity than the triethylene glycol functional PPE, which was unexpected. The polymer sensors showed the selectivity in that the Stern-Volmer constants for Fe3+ are 2–3 times higher than those for Na+, K+, and Ca2+. Time-resolved photoluminescence spectroscopy revealed that the quenching is static, indicating that there may be coordination between Fe (III) and alkyne/phenyl groups in the PPE backbone. For practical applications, we produced a PPE-containing, fluorescent polydimethylsiloxane (PDMS) pad. Dropping Fe solution like an ink on the pad exhibits a dark stain, demonstrating the scheme of producing Fe-detecting flexible pads for future applications in wearable sensor technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.-G. Banica, Chemical sensors and biosensors: fundamentals and applications, John Wiley & Sons (2012).

  2. L. Basabe-Desmonts, D. N. Reinhoudt, and M. Crego-Calama, Chem. Soc. Rev., 36, 993 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. O. S. Wolfbeis, J. Mater. Chem., 15, 2657 (2005).

    Article  CAS  Google Scholar 

  4. M. Gao and B. Z. Tang, ACS Sens., 2, 1382 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. T. L. Mako, J. M. Racicot, and M. Levine, Chem. Rev., 119, 322 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. A. J. Bandodkar, I. Jeerapan, and J. Wang, ACS Sens., 1, 464 (2016).

    Article  CAS  Google Scholar 

  7. J. R. Sempionatto, I. Jeerapan, S. Krishnan, and J. Wang, Anal. Chem., 92, 378 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. A. W. Czarnik, Acc. Chem. Res., 27, 302 (1994).

    Article  CAS  Google Scholar 

  9. E. M. Nolan and S. J. Lippard, Chem. Rev., 108, 3443 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. H. N. Kim, W. X. Ren, J. S. Kim, and J. Yoon, Chem Soc. Rev., 41, 3210 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. K P. Carter, A. M. Young, and A. E. Palmer, Chem. Rev., 114, 4564 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N. Abbaspour, R. Hurrell, and R. Kelishadi, J. Res. Med. Sci., 19, 164 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. P. T. Lieu, M. Heiskala, P. A. Peterson, and Y. Yang, Mol. Aspects Med., 22, 1 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. T. Hirayama and H. Nagasawa, J. Clin. Biochem. Nutr., 60, 39 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. S. K. Sahoo and G. Crisponi, Molecules, 24 (2019).

  16. W. Breuer, S. Epsztejn, P. Millgram, and I. Z. Cabantchik, Am. J. Physiol., 268, C1354 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, New York, 3rd edn. (2006).

    Book  Google Scholar 

  18. H. Lee, R. D. Hancock, and H.-S. Lee, J. Phys. Chem. A, 117, 13345 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. J. L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Büschel, A. I. Tolmachev, J. Daub, and K. Rurack, J. Am. Chem. Soc., 127, 13522 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. D. T. McQuade, A. E. Pullen, and T. M. Swager, Chem. Rev., 100, 2537 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. S. W. Thomas, G. D. Joly, and T. M. Swager, Chem. Rev., 107, 1339 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. S. Rochat and T. M. Swager, ACS Appl. Mater. Interfaces, 5, 4488 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. R. Sakai, Polym. J., 48, 59 (2016).

    Article  CAS  Google Scholar 

  24. G. Anantha-Iyengar, K. Shanmugasundaram, M. Nallal, K.-P. Lee, M. J. Whitcombe, D. Lakshmi, and G. Sai-Anand, Prog. Polym. Sci., 88, 1 (2019).

    Article  CAS  Google Scholar 

  25. T. Wang, N. Zhang, W. Bai, and Y. Bao, Polym. Chem., 11, 3095 (2020).

    Article  CAS  Google Scholar 

  26. Q. Zhou and T. M. Swager, J. Am. Chem. Soc., 117, 12593 (1995).

    Article  CAS  Google Scholar 

  27. Z. Chen, C. Xue, W. Shi, F.-T. Luo, S. Green, J. Chen, and H. Liu, Anal. Chem., 76, 6513 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. X. Yong, W. Wan, M. Su, W. You, X. Lu, Y. Yan, J. Qu, R. Liu, and T. Masuda, Polym. Chem., 4, 4126 (2013).

    Article  CAS  Google Scholar 

  29. I.-B. Kim, A. Dunkhorst, J. Gilbert, and U. H. F. Bunz, Macromolecules, 38, 4560 (2005).

    Article  CAS  Google Scholar 

  30. H. Jiang, X. Zhao, and K. S. Schanze, Langmuir, 22, 5541 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. N. Adachi, M. Nakajima, M. Okada, M. Sugeno, and T. Norioka, Polym. Adv. Technol., 27, 284 (2016).

    Article  CAS  Google Scholar 

  32. J. L. Novotney and W. R. Dichtel, ACS Macro Lett., 2, 423 (2013).

    Article  CAS  Google Scholar 

  33. R. H. Pawle, A. Agarwal, S. Malveira, Z. C. Smith, and S. W. Thomas, Macromolecules, 47, 2250 (2014).

    Article  CAS  Google Scholar 

  34. J. Li, C. E. Kendig and E. E. Nesterov, J. Am. Chem. Soc., 129, 15911 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. E. L. Lanni and A. J. McNeil, J. Am. Chem. Soc., 131, 16573 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. S. Grunder, D. Muñoz Torres, C. Marquardt, A. Błaszczyk, R. Krupke, and M. Mayor, Eur. J. Org. Chem., 2011, 478 (2011).

    Article  Google Scholar 

  37. V. Gómez-Vallejo, M. Puigivila, S. Plaza-Garcıa, B. Szczupak, R. Piñol, J. L. Murillo, V. Sorribas, G. Lou, S. Veintemillas, P. Ramos-Cabrer, J. Llop, and A. Millán, Nanoscale, 10, 14153 (2018).

    Article  PubMed  Google Scholar 

  38. V. Patsula, D. Horák, J. Kućka, H. Macková, V. Lobaz, P. Francová, V. Herynek, T. Heizer, P. Páral, and L. Šefc, Sci. Rep., 9, 10765 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. D. Brenna, M. Villa, T. N. Gieshoff, F. Fischer, M. Hapke, and A. Jacobi von Wangelin, Angew. Chem. Int. Ed., 56, 8451 (2017).

    Article  CAS  Google Scholar 

  40. M.-Y. Hu, J. Lian, W. Sun, T.-Z. Qiao, and S.-F. Zhu, J. Am. Chem. Soc., 141, 4579 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. H. Xiong, N. Ramkumar, M.-F. Chiou, W. Jian, Y. Li, J.-H. Su, X. Zhang, and H. Bao, Nat. Commun., 10, 122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. S. H. Carpenter, T. M. Baker, S. B. Muñoz, W. W. Brennessel, and M. L. Neidig, Chem. Sci., 9, 7931 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. F. Barni, S. W. Lewis, A. Berti, G. M. Miskelly, and G. Lago, Talanta, 72, 896 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungjin Koo.

Additional information

Supporting information

The Supporting Information includes Additional Data and NMR Spectra. The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: We thank Ms. Hyeran Lee and Mr. Yonggu Han for experimental assistance. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1G1A1102161).

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Koo, B. Iron(III) Sensors Based on the Fluorescence Quenching of Poly(phenylene ethynylene)s and Iron-Detecting PDMS Pads. Macromol. Res. 29, 360–364 (2021). https://doi.org/10.1007/s13233-021-9041-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9041-4

Keywords

Navigation