Skip to main content
Log in

Synthesis, Characterisation and Mesophase Transition of Hexasubstituted Cyclotriphosphazene Molecules with Schiff Base and Azo Linking Units and Determination of Their Fire Retardant Properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hexakis(oxy-4-benzaldehyde)cyclotriphosphazene, 1 was successfully synthesised by nucleophilic substitution reaction between hexachlorocyclotriphosphazene, HCCP and 4-hydroxybenzaldehyde. Azotization reaction of p-nitroaniline with phenol formed 4-(4-nitrophenylazo)phenol, 2 which was alkykated with heptyl, nonyl, decyl, dodecyl and tetradecylbromide to give a series of nitro compounds, 3a-e. Reduction of 3a-e and 2 formed the subsequent amine compounds 4a-f, 4-(4-alkyloxyphenylazo)phenylamine. Another similar reaction of protected aniline with a series of substituted aniline formed a series of compounds 4g-i. A series of hexasubstituted cyclotriphosphazene molecules containing Schiff base and azo linking units, 5a-i were synthesised from the reaction between intermediates 1 and 4a-i. Further reduction of compound 5i afford compound 5j with amino terminal end. All the synthesised intermediates and compounds were characterised using Fourier Transform Infrared spectroscopy (FT-IR), 1H and 13C Nuclear Magnetic Resonance spectroscopy (NMR) and CHN elemental analysis. The liquid crystal properties of intermediates and final compounds were determined using Polarised Optical Microscope (POM) and their phase transitions confirmed using Differential Scanning Calorimetry (DSC). Only intermediates 3a-e showed mesophase of smectic A and compounds 5a-e with alkoxy chain were mesogenic with smectic A and nematic phases. In addition, compound 5h exhibited nematic phase only. However, all the other intermediates and compounds were found to be non-mesogenic. Furthermore, the fire retardant of final compounds were determined using Limiting Oxygen Index (LOI) testing. The LOI value of pure polyester resin was increased from 22.53 to 24.71% when incorporated with 1 wt% of HCCP. Moreover, all the final compounds showed a positive in LOI value the highest LOI value was belonged to compound 5i with 27.90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. R. Allcock and R. L. Kugel, J. Am. Chem. Soc., 87, 4216 (1965).

    Article  CAS  Google Scholar 

  2. H. R. Allcock, Chem. Rev., 72, 315 (1972).

    Article  CAS  Google Scholar 

  3. H. R. Allcock, Phosphorus-Nitrogen Compounds, Academic Press, New York, 1972.

    Google Scholar 

  4. G. Meier, E. Sackmann, and J. G. Grabmaier, Applications of Liquid Crystals, Springer, New York, 1975.

    Book  Google Scholar 

  5. V. A. Shenderovskyi, A. D. Trokhymchuk, L. N. Lisetski, B. V. Kozhushko, and I. A. Gvozdovskyy, J. Mol. Liq., 1 (2018).

  6. S. Chandrasekhar, Liquid Crystals, 2nd ed., Cambridge University Press, Cambridge, 1992.

    Book  Google Scholar 

  7. X. Wang, Q. Zhou, and Q. Zhou, Liquid Crystalline Polymers, World Scientific Publishing Co. Pte. Ltd, Singapore, 2004.

    Book  Google Scholar 

  8. Z. Jamain, M. Khairuddean, M. L. Loh, N. L. Abdul Manaff, and M. Z. H. Makmud, Malays. J. Chem., 22, 125 (2020).

    Google Scholar 

  9. H. R. Allcock and E. H. Klingenberg, Macromolecules, 28 (1995).

  10. K. Moriya, H. Mizusaki, M. Kato, S. Yano, and M. Kajiwara, Liq. Cryst., 18, 795 (1995).

    Article  CAS  Google Scholar 

  11. A. M. Levelut and K. Moriya, Liq. Cryst., 20, 119 (1996).

    Article  CAS  Google Scholar 

  12. K. Moriya, T. Suzuki, H. Mizusaki, S. Yano, and M. Kajiwara, Chem. Lett., 1001 (1997).

  13. K. Moriya, T. Suzuki, S. Yano, and M. Kajiwara, Liq. Cryst., 19, 711 (1995).

    Article  CAS  Google Scholar 

  14. K. Moriya, H. Ikematsu, S. Nakagawa, S. Yano, and K. Negita, Jpn. J. Appl. Phys., 40, 340 (2001).

    Article  Google Scholar 

  15. M. Gleria and R. D. Jaeger, J. Inorg. Org. Polym., 11, 1 (2001).

    Article  CAS  Google Scholar 

  16. H. R. Allcock, Phosphorus Sulfur Silicon Relat. Elem., 179, 661 (2004).

    Article  CAS  Google Scholar 

  17. L. Shi, H. Ge, S. Tan, H. Li, Y. Song, H. Zhu, and R. Tan, Eur. J. Medic. Chem., 1 (2006).

  18. R. E. Lyon, L. Speite, R. N. Walters, and S. Crowley, Fire Mater., 27, 195 (2003).

    Article  CAS  Google Scholar 

  19. G. F. Levchik, Y. V. Grigoriev, A. I. Balabanovich, and S. V. Levchik, Polym Int., 49, 1095 (2000).

    Article  CAS  Google Scholar 

  20. J. W. Gu, G. C. Zhang, S. L. Dong, Q. Y. Zhang, and J. Kong, Surf. Coat. Technol., 201, 7835 (2007).

    Article  CAS  Google Scholar 

  21. K. Moriya, T. Suzuki, Y. Kawanishi, T. Masuda, H. Mizusaki, S. Nakagawa, H. Ikematsu, K. Mizuno, S. Yano, and M. Kajiwara, Appl. Organomet. Chem., 12, 771 (1998).

    Article  CAS  Google Scholar 

  22. Y. Rong, W. Bo, H. Xiaofeng, M. Binbin, and L. Jinchun, Polym. Degrad. Stab., 144, 62 (2017).

    Article  Google Scholar 

  23. D. Kumar, G. M. Fohlen, and J. A. Parker, J. Polym. Sci. Polym. Chem. Ed., 22, 927 (1984).

    Article  CAS  Google Scholar 

  24. M. E. Gouri, A. E. Bachiri, S. E. Hegazi, R. Ziraoui, M. Rafik, and A. E. Harfi, Polym. Degrad. Stab., 94, 2101 (2009).

    Article  Google Scholar 

  25. J. Y. Chang, H. Y. Ji, M. J. Han, S. B. Rhee, S. Cheong, and M. Yoon, Macromolecules, 27, 1376 (1994).

    Article  CAS  Google Scholar 

  26. M. E. Gouri, A. E. Bachiri, S. E. Hegazi, R. Ziraoui, M. Rafik, and A. E. Harfi, J. Mater. Env. Sci., 2, 319 (2011).

    Google Scholar 

  27. Y. J. Shin, Y. R. Ham, S. H. Kim, D. H. Lee, S. B. Kim, C. S. Park, Y. M. Yoo, J. G. Kim, S. H. Kwon, and J. S. Shin, J. Ind. Eng. Chem., 16, 364 (2010).

    Article  CAS  Google Scholar 

  28. V. P. Fadeeva, V. D. Tikhova, and O. N. Nikulicheva, J. Analyt. Chem., 63, 1094 (2008).

    Article  CAS  Google Scholar 

  29. G. W. Gray, Molecular Structure and the Properties of Liquid Crystals, Academic Press, London, 1962.

    Google Scholar 

  30. B. T. Thaker, P. H. Patel, A. D. Vansadiya, and J. B. Kanojiya, Mol. Cryst. Liq. Cryst., 515, 135 (2009).

    Article  CAS  Google Scholar 

  31. Z. Jamain, N. F. Omar, and M. Khairuddean, Molecules, 25, 3780 (2020).

    Article  CAS  Google Scholar 

  32. Z. Jamain, M. Khairuddean, and T. Guan-Seng, RSC Adv., 10, 28918 (2020).

    Article  CAS  Google Scholar 

  33. V. S. Sharma and R. B. Patel, Mol. Cryst. Liq. Cryst., 643, 62 (2017).

    Article  CAS  Google Scholar 

  34. Z. Galewski, Mol. Cryst. Liq. Cryst., 249, 43 (1994).

    Article  CAS  Google Scholar 

  35. Z. Galewski and H. J. Coles, J. Mol. Liq., 79, 77 (1999).

    Article  CAS  Google Scholar 

  36. S. Sakagami and M. Nakamizo, Bull. Chem. Soc. Jpn., 53, 265 (1980).

    Article  CAS  Google Scholar 

  37. H. Kelker, R. Hatz, Handbook of Liquid Crystals, Verlag Chemie, Weinheim-Deerfield Beach, Florida, 917 Seiten, 438 Abbildungen, 48 Tabellen, Preis DM 420.0, 1980.

  38. S. Zahra, J. Nasrin, and S. Shahla, Carbohydr. Polym., 118, 183 (2015).

    Article  Google Scholar 

  39. Y. Shuang, W. Jun, H. Siqi, W. Junpeng, and T. Yushan, Polym. Degrad. Stab., 126, 9 (2016).

    Article  Google Scholar 

  40. Y. Rong, H. Wentian, X. Liang, S. Yan, and L. Jinchun, Polym. Degrad. Stab., 122, 102 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuhair Jamain or Melati Khairuddean.

Additional information

Supporting information

Supplementary data are available regarding the experimental procedure for the preparation of all the intermediates and final compounds, and the DSC thermogram of intermediates 3a-e and compounds 5a-e. The materials are available via the Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The image from this article is used as the cover image of the Volume 29, Issue 5.

Acknowledgment: The authors would like to thank the Universiti Sains Malaysia (USM), grant no. 1001/PKIMIA/811332 and Universiti Malaysia Sabah (UMS), grant no. SGA0037-2019 and SPB0004-2020 for fundings and lab facilities.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamain, Z., Khairuddean, M., Guan-Seng, T. et al. Synthesis, Characterisation and Mesophase Transition of Hexasubstituted Cyclotriphosphazene Molecules with Schiff Base and Azo Linking Units and Determination of Their Fire Retardant Properties. Macromol. Res. 29, 331–341 (2021). https://doi.org/10.1007/s13233-021-9013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9013-8

Keywords

Navigation