Skip to main content
Log in

Carbazole-Based Hyperbranched Polyester Polyol: Structural, Rheological, Thermal and Optical Properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The present study sought to obtain a hyperbranched polyester polyol derivative with fluorescent properties. Initially, a 4-((4-(9H-carbazol-9-yl)benzyl)oxy)-4-oxobut-2-enoic acid (CAV) was synthesized and esterified with a hyperbranched polyester polyol obtained from fourth generation (HBP) to synthesize carbazole-based hyperbranched polyester polyols (HBPCAV). The proportions employed of CAV were 5, 10, 15, and 20 wt% relative to that of HBP. The grafted CAV percentage (PgCAV) increased with the CAV content. The conversion percentages (CP) of the reactions for obtaining HBPCAV were higher than 95% and the hydroxyl values (OHV) were lower than that of HBP. The modification percentage (MP) of the HBP was between 9.33 and 27.38%. Using proton nuclear magnetic resonance (1H NMR) and infrared (IR) analyses was evidenced the formation of CAV and HBPCAV. Dynamic light scattering (DLS) analysis showed that HBPCAV exhibited aggregations. The number average molar mass (Mn), viscosity (η), and glass transition temperature (Tg) values of the HBPCAV samples were higher than those of the HBP, and also increased with the PgCAV values. The rheological behaviors of the HBP and HBPCAV samples were mainly Newtonian and shear-thinning, respectively. All HBPCAV exhibited electroluminescent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Liu, D. Wang, W. Wang, Y. Song, Y. Li, H. Zhou, C. Chen, and X. Zhao, Polym. J., 45, 318 (2013).

    Article  CAS  Google Scholar 

  2. E. Žagar and M. Žigon, Prog. Polym. Sci., 36, 53 (2011).

    Article  CAS  Google Scholar 

  3. D. Thomasson, F. Boisson, E. Girard-Reydet, and F. Méchin, React. Funct. Polym., 66, 1462 (2006).

    Article  CAS  Google Scholar 

  4. E. Žagar and M. Žigon, Macromolecules, 35, 9913 (2002).

    Article  CAS  Google Scholar 

  5. E. Bat, G. Gündüz, D. Kisakürek, and I. M. Akhmedov, Prog. Org. Coatings, 55, 330 (2006).

    Article  CAS  Google Scholar 

  6. R. Mesias and E. A. Murillo, J. Appl. Polym. Sci., 132, 1 (2015).

    Article  CAS  Google Scholar 

  7. A. R. Gataulina, A. A. Khannanov, O. A. Malinovskikh, O. V. Bondar’, N. A. Ulakhovich, and M. P. Kutyreva, Russ. J. Gen. Chem., 83, 2269 (2013).

    Article  CAS  Google Scholar 

  8. N. E. Ikladious, J. N. Asaad, and N. N. Rozik, Des. Monomers Polym., 12, 469 (2009).

    Article  CAS  Google Scholar 

  9. P. P. Vallejo, B. L. López, and E. A. Murillo, Prog. Org. Coat., 87, 213 (2015).

    Article  CAS  Google Scholar 

  10. M. Guzmán, D. Giraldo, and E. Murillo, Polimeros, 27, 1 (2017).

    Article  Google Scholar 

  11. F. F. Zhang, L. L. Gan, and C. H. Zhou, Bioorg. Med. Chem. Lett., 20, 1881 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. J. V. Grazulevicius, P. Strohriegl, J. Pielichowski, and K. Pielichowski, Prog. Polym. Sci., 28, 1297 (2003).

    Article  CAS  Google Scholar 

  13. M. Bashir, A. Bano, A. S. Ijaz, and B. A. Chaudhary, Molecules, 20, 13496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. B. Lee, S. N. Park, C. Kim, H. W. Lee, H. W. Lee, Y. K. Kim, and S. S. Yoon, Synth. Met., 203, 174 (2015).

    Article  CAS  Google Scholar 

  15. P. Baronas, K. Kazlauskas, G. Kreiza, V. Jankauskas, A. Tomkeviciene, J. Simokaitiene, S. Grigalevicius, J. V. Grazulevicius, and S. Jursenas, Dye Pigment., 123, 370 (2015).

    Article  CAS  Google Scholar 

  16. M. Ates, N. Uludag, T. Karazehir, and F. Arican, Express Polym. Lett., 8, 480 (2014).

    Article  CAS  Google Scholar 

  17. C. Zhao, K. Ouyang, N. Yang, J. Zhang, and Z. Yang, Macromol. Res., 24, 393 (2016).

    Article  CAS  Google Scholar 

  18. S. S. Choi, A. S. Lee, H. S. Lee, K. Y. Baek, D. H. Choi, and S. S. Hwang, Macromol. Res., 19, 261 (2011).

    Article  CAS  Google Scholar 

  19. R. Cantillo, E. A. Murillo, and J. Percino, J. Phys. Conf. Ser., 1386, 1 (2019).

    Article  CAS  Google Scholar 

  20. X. Yi, M. Huang, Y. Qi, and E. Gao, Dalt. Trans., 43, 3691 (2014).

    Article  CAS  Google Scholar 

  21. Q. Y. He, W. Y. Lai, Z. Ma, D. Y. Chen and W. Huang, Eur. Polym. J., 44, 3169 (2008).

    Article  CAS  Google Scholar 

  22. P. C. Yang, H. Wu, H. W. Wen, and W. N. Hung, Eur. Polym. J., 49, 2303 (2013).

    Article  CAS  Google Scholar 

  23. O. Korychenska, C. Acebo, M. Bezuglyi, A. Serra, and J. V. Grazulevicius, React. Funct. Polym., 106, 86 (2016).

    Article  CAS  Google Scholar 

  24. J. Qu, M. Shiotsuki, N. Kobayashi, F. Sanda, and T. Masuda, Polymer (Guildf)., 48, 6481 (2007).

    Article  CAS  Google Scholar 

  25. X. Li, H. Zhao, L. Gao, X. Xie, W. Zhang, M. Wang, Y. Wu, Y. Miao, H. Wang, and B. Xu, RSC Adv., 9, 36058 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Wu, D. Wu, H. Zhao, J. Li, X. Li, Z. Wang, H. Wang, F. Zhu, and B. Xu, RSC Adv., 9, 22176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. P. F. Cao, L. H. Rong, A. De Leon, Z. Su, and R. C. Advincula, Macromolecules, 48, 6801 (2015).

    Article  CAS  Google Scholar 

  28. W. Wu, S. Ye, L. Huang, L. Xiao, Y. Fu, Q. Huang, G. Yu, Y. Liu, J. Qin, Q. Li, and Z. Li, J. Mater. Chem., 22, 6374 (2012).

    Article  CAS  Google Scholar 

  29. B. L. López, E. A. Murillo, P. P. Vallejo, and L. Sierra, J. Appl. Polym. Sci., 116, 2658 (2010).

    Google Scholar 

  30. E. A. Murillo, P. P. Vallejo and B. L. López, E-Polymers, 10, 1347 (2010).

    Article  Google Scholar 

  31. S. T. Methods, Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols, 2000, Vol. 08.

  32. I. E. Ezeh, S. A. Umoren, E. E. Essien, and A. P. Udoh, Ind. Crops Prod., 36, 94 (2012).

    Article  CAS  Google Scholar 

  33. P. Xu, X. Zhu, P. Cong, X. Du, and R. Zhang, Constr. Build. Mater., 165, 295 (2018).

    Article  CAS  Google Scholar 

  34. C. A. Ararat, W. Quiñonez, and E. A. Murillo, Macromol. Res., 27, 693 (2019).

    Article  CAS  Google Scholar 

  35. E. Žagar and M. Žigon, J. Chromatogr. A, 1034, 77 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. M. Jia, L. Jiang, F. Niu, Y. Zhang, and X. Sun, R. Soc. Open Sci., 5, 171988 (2019).

    Article  CAS  Google Scholar 

  37. M. Zhang, R. H. Colby, S. T. Milner, T. C. M. Chung, T. Huang, and W. Degroot, Macromolecules, 46, 4313 (2013).

    Article  CAS  Google Scholar 

  38. Q. Wang, X. Huang, A. Nakamura, W. Burchard, and F. R. Hallett, Carbohydr. Res., 340, 2637 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. N. A. Wong, N. V. Uchida, T. U. Dissanayake, M. Patel, M. Iqbal, and T. J. Woehl, J. Pharm. Sci., 109, 881 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. L. Chikh, M. Tessier, and A. Fradet, Polymer (Guildf)., 48, 1884 (2007).

    Article  CAS  Google Scholar 

  41. J. Vuković, Synthesis and Characterization of Aliphatic Hyperbranched Polyesters, Ph. D. Dissertation, Universität Osnabrück, 2006.

  42. M. Xu, X. Yan, R. Cheng, and X. Yu, Polym. Int., 50, 1338 (2001).

    Article  CAS  Google Scholar 

  43. F. Dumur, L. Beouch, S. Peralta, G. Wantz, F. Goubard, and D. Gigmes, Org. Electron., 25, 21 (2015).

    Article  CAS  Google Scholar 

  44. Z. Wei, J. Xu, G. Nie, Y. Du, and S. Pu, J. Electroanal. Chem., 589, 112 (2006).

    Article  CAS  Google Scholar 

  45. T. Zhang, D. Q. Xu, J. M. Chen, P. Zhang, and X. C. Wang, Chinese Chem. Lett., 27, 441 (2016).

    Article  CAS  Google Scholar 

  46. J. Bu, H. Duan, X. Wang, T. Xu, X. Meng, and D. Qin, Res. Chem. Intermed., 41, 2767 (2015).

    Article  CAS  Google Scholar 

  47. J. Liu, W. Li, B. Wang, M. Tan, Y. He, T. Miao, X. Lü, G. Fu, and H. He, Opt. Mater. (Amst)., 107, 1 (2020).

    Google Scholar 

  48. K. Albrecht, K. Matsuoka, K. Fujita, and K. Yamamoto, Angew. Chem. Int. Ed., 54, 5677 (2015).

    Article  CAS  Google Scholar 

  49. R. W. Ricci and J. M. Nesta, J. Phys. Chem., 80, 974 (1976).

    Article  CAS  Google Scholar 

  50. G. E. Johnson, J. Phys. Chem., 84, 2940 (1980).

    Article  CAS  Google Scholar 

  51. H. Shi, D. Xin, S. Di Bai, L. Fang, X. E. Duan, J. Roose, H. Peng, S. Chen, and B. Z. Tang, Org. Electron., 33, 78 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Fondo de Investigaciones Universitarias de la Universidad Francisco de Paula Santander for the financial support of the project: “síntesis y caracterización de un poliéster poliol altamente ramificado modificado con un derivado vinílico de carbazol”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin A. Murillo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murillo, E.A., Cerón, M. & Percino, M.J. Carbazole-Based Hyperbranched Polyester Polyol: Structural, Rheological, Thermal and Optical Properties. Macromol. Res. 29, 257–266 (2021). https://doi.org/10.1007/s13233-021-9031-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9031-6

Keywords

Navigation