Skip to main content

Advertisement

Log in

Impact of the Assimilation of INSAT-3D Sounder Retrieved Temperature and Humidity Profiles on Extreme Rainfall Event Forecast

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In the present study, the impact of the assimilation of the Indian National Satellite (INSAT-3D) retrieved temperature and humidity profiles are evaluated during a heavy rainfall event. The Weather Research and Forecasting (WRF) and its three-dimensional variational (3D-Var) data assimilation system are used in this study. The extreme rainfall event which occurred during June 12th, 2017, to June 15th, 2017, over Bangladesh and adjoining region is taken as the case study. The analysis obtained after assimilation is compared with the European Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis. Results shows quite good improvement in temperature and humidity profiles when compared with ECMWF re-analysis. The model predicted 72 h rainfall forecast is also found to improve on the assimilation of INSAT-3D retrieved temperature and humidity profiles. From the present study, it is observed that INSAT-3D data have large impact on the humidity profiles after assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Barker, D. M., Huang, W., Guo, Y. R., Bourgeois, A., & Xiao, Q. (2004). A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Monthly Weather Review, 132(4), 897.

    Article  Google Scholar 

  • Bauer, P., Auligné, T., Bell, W., Geer, A., Guidard, V., Heilliette, S., et al. (2011). Satellite cloud and precipitation assimilation at operational NWP centres. Quarterly Journal of the Royal Meteorological Society, 137(661), 1934.

    Article  Google Scholar 

  • Benedetti, A., Lopez, P., Bauer, P., & Moreau, E. (2005). Experimental use of TRMM precipitation radar observations in 1D+ 4D-Var assimilation. Quarterly Journal of the Royal Meteorological Society, 131(610), 2473.

    Article  Google Scholar 

  • Bohra, A., Basu, S., Rajagopal, E., Iyengar, G., Gupta, M. D., Ashrit, R., & Athiyaman, B. (2006). Heavy rainfall episode over Mumbai on 26 July 2005: Assessment of NWP guidance. Current Science, 90, 1188–1194.

    Google Scholar 

  • Brennan, M. J., Hennon, C. C., & Knabb, R. D. (2009). The operational use of QuikSCAT ocean surface vector winds at the National Hurricane Center. Weather and Forecasting, 24(3), 621.

    Article  Google Scholar 

  • Chen, S. H. (2007). The impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulations. Monthly Weather Review, 135(2), 549.

    Article  Google Scholar 

  • Chen, H., Sun, J., & Fan, K. (2012). Decadal features of heavy rainfall events in eastern China. Acta Meteorologica Sinica, 26(3), 289.

    Article  Google Scholar 

  • Chou, S.H., Zavodsky, B., Jedlovec, G., & Lapenta, W. (2006). Assimilation of Atmospheric Infrared Sounder (AIRS) data in a regional model. In Proceedings of the 14th conference on satellite meteorology and oceanography. American Meteorological Society, Atlanta, GA, CD-ROM P (Vol. 5).

  • Colle, B. A., Westrick, K. J., & Mass, C. F. (1999). Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Weather and Forecasting, 14(2), 137.

    Article  Google Scholar 

  • Courtier, P., Thépaut, J. N., & Hollingsworth, A. (1994). A strategy for operational implementation of 4D-Var, using an incremental approach. Quarterly Journal of the Royal Meteorological Society, 120(519), 1367.

    Article  Google Scholar 

  • Das, S., Ashrit, R., & Moncrieff, M. (2006). Simulation of a Himalayan cloudburst event. Journal of Earth System Science, 115(3), 299.

    Article  Google Scholar 

  • Dash, S., Sahu, D. K., & Sahu, S. (2013). Impact of AWS observations in WRF-3DVAR data assimilation system: A case study on abnormal warming condition in Odisha. Natural Hazards, 65(1), 767.

    Article  Google Scholar 

  • Deb, S., Kishtawal, C., & Pal, P. (2010). Impact of Kalpana-1-derived water vapor winds on Indian Ocean tropical cyclone forecasts. Monthly Weather Review, 138(3), 987.

    Article  Google Scholar 

  • Easterling, D. R., Evans, J., Groisman, P. Y., Karl, T. R., Kunkel, K. E., & Ambenje, P. (2000). Observed variability and trends in extreme climate events: A brief review. Bulletin of the American Meteorological Society, 81(3), 417.

    Article  Google Scholar 

  • Hsiao, L. F., Chen, D. S., Kuo, Y. H., Guo, Y. R., Yeh, T. C., Hong, J. S., Fong, C. T. & Lee, C. S. (2012). Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Weather and Forecasting, 27(5), 1249.

    Article  Google Scholar 

  • Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Karl, T. R., & Easterling, D. R. (1999). Climate extremes: Selected review and future research directions. Weather and Climate Extremes, 42, 309–325.

    Article  Google Scholar 

  • Kaur, I., Deb, S., Kishtawal, C., Pal, P., & Kumar, R. (2013). Low level cloud motion vectors from Kalpana-1 visible images. Journal of Earth System Science, 122(4), 935.

    Article  Google Scholar 

  • Kelly, G., Bauer, P., Geer, A. J., Lopez, P., & Thepaut, J. N. (2008). Impact of SSM/I observations related to moisture, clouds, and precipitation on global NWP forecast skill. Monthly Weather Review, 136(7), 2713.

    Article  Google Scholar 

  • Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D., & Mohanty, U. (2008). Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society, 134(636), 1897.

    Article  Google Scholar 

  • Kumar, P., Kishtawal, C., & Pal, P. (2014). Impact of satellite rainfall assimilation on Weather Research and Forecasting model predictions over the Indian region. Journal of Geophysical Research: Atmospheres, 119(5), 2017.

    Google Scholar 

  • Kumar, P., & Varma, A. K. (2017). Assimilation of INSAT-3D hydro-estimator method retrieved rainfall for short-range weather prediction. Quarterly Journal of the Royal Meteorological Society, 143(702), 384.

    Article  Google Scholar 

  • Kuznetsov, L., Ide, K., & Jones, C. K. (2003). A method for assimilation of Lagrangian data. Monthly Weather Review, 131(10), 2247.

    Article  Google Scholar 

  • Lakshmivarahan, S., Lewis, J., & Phan, D. (2013). Data assimilation as a problem in optimal tracking: Application of Pontryagin’s minimum principle to atmospheric science. Journal of the Atmospheric Sciences,70(4), 1257.

  • Lekhadiya, H., & Jana, R. (2019). Assimilation of INSAT-3D Sounder retrieved thermodynamic profiles using WRF model for extreme rainfall event over north central part of INDIA. Italian Journal of Pure and Applied Mathematics, 41, 369.

    Google Scholar 

  • Lekhadiya, H., & Jana, R. (2020). Assimilation of INSAT-3D satellite data in WRF model. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 90(3), 557.

    Article  Google Scholar 

  • Lopez, P. (2011). Direct 4D-Var assimilation of NCEP stage IV radar and gauge precipitation data at ECMWF. Monthly Weather Review, 139(7), 2098.

    Article  Google Scholar 

  • Lorenc, A., Ballard, S., Bell, R., Ingleby, N., Andrews, P., Barker, D., et al. (2000). The Met. Office global three-dimensional variational data assimilation scheme. Quarterly Journal of the Royal Meteorological Society, 126(570), 2991.

    Article  Google Scholar 

  • Mohanty, U., Routray, A., Osuri, K. K., & Prasad, S. K. (2012). A study on simulation of heavy rainfall events over Indian region with ARW-3DVAR modeling system. Pure and Applied Geophysics, 169(3), 381.

    Article  Google Scholar 

  • Parrish, D. F., & Derber, J. C. (1992). The National Meteorological Center’s spectral statistical-interpolation analysis system. Monthly Weather Review,120(8), 1747.

  • Prasad, V., Gupta, A., Rajagopal, E., & Basu, S. (2013). Impact of Oscat surface wind data on T574L64 assimilation and forecasting system—a study involving tropical cyclone Thane. Current Science, 104(5), 627.

    Google Scholar 

  • Rabier, F. (2005). Overview of global data assimilation developments in numerical weather-prediction centres. Quarterly Journal of the Royal Meteorological Society, 131(613), 3215.

    Article  Google Scholar 

  • Rakesh, V., & Goswami, P. (2011). Impact of background error statistics on forecasting of tropical cyclones over the north Indian Ocean. Journal of Geophysical Research: Atmospheres, 116, D20130.

    Article  Google Scholar 

  • Rakesh, V., & Goswami, P. (2015). Impact of data assimilation on high-resolution rainfall forecasts: A spatial, seasonal, and category analysis. Journal of Geophysical Research: Atmospheres, 120(2), 359.

    Google Scholar 

  • Rakesh, V., Singh, R., Pal, P., & Joshi, P. (2009). Impacts of satellite-observed winds and total precipitable water on WRF short-range forecasts over the Indian region during the 2006 summer monsoon. Weather and Forecasting, 24(6), 1706.

    Article  Google Scholar 

  • Rakesh, V., Singh, R., Pal, P., & Joshi, P. (2011). Impact of satellite soundings on the simulation of heavy rainfall associated with tropical depressions. Natural Hazards, 58(3), 945.

    Article  Google Scholar 

  • Rakesh, V., Singh, R., Yuliya, D., Pal, P., & Joshi, P. (2009). Impacts of satellite-observed winds and total precipitable water on WRF short-range forecasts over the Indian region during the 2006 summer monsoon. International Journal of Remote Sensing, 30(18), 4867.

    Article  Google Scholar 

  • Routray, A., Mohanty, U., Niyogi, D., Rizvi, S., & Osuri, K. K. (2010). Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteorology and Atmospheric Physics, 106(1–2), 107.

    Article  Google Scholar 

  • Sandeep, S., Chandrasekar, A., & Singh, D. (2006). The impact of assimilation of AMSU data for the prediction of a tropical cyclone over India using a mesoscale model. International Journal of Remote Sensing, 27(20), 4621.

    Article  Google Scholar 

  • Schwartz, C. S., Liu, Z., Huang, X. Y., Kuo, Y. H., & Fong, C. T. (2013). Comparing limited-area 3DVAR and hybrid variational-ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Monthly Weather Review, 141(12), 4350.

    Article  Google Scholar 

  • Singh, R., Kishtawal, C., Ojha, S. P., & Pal, P. (2012). Impact of assimilation of Atmospheric InfraRed Sounder (AIRS) radiances and retrievals in the WRF 3D-Var assimilation system. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2011JD017367.

    Article  Google Scholar 

  • Singh, R., Pal, P., Kishtawal, C., & Joshi, P. (2008). The impact of variational assimilation of SSM/I and QuikSCAT satellite observations on the numerical simulation of Indian Ocean tropical cyclones. Weather and Forecasting, 23(3), 460.

    Article  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2005). A description of the advanced research WRF version 2. Technical Reports, DTIC Document

  • Talagrand, O. (1997). Assimilation of observations, an introduction (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice). Journal of the Meteorological Society of Japan. Ser. II, 75(1B), 191.

    Article  Google Scholar 

  • Vinodkumar, A., Chandrasekar, A., Alapaty, K., & Niyogi, D. (2008). The impacts of indirect soil moisture assimilation and direct surface temperature and humidity assimilation on a mesoscale model simulation of an Indian monsoon depression. Journal of Applied Meteorology and Climatology, 47(5), 1393.

    Article  Google Scholar 

  • Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (Vol. 100). Oxford, UK: Academic Press.

    Google Scholar 

  • Wu, W. S., Purser, R. J., & Parrish, D. F. (2002). Three-dimensional variational analysis with spatially inhomogeneous covariances. Monthly Weather Review, 130(12), 2905.

    Article  Google Scholar 

  • Zapotocny, T. H., Jung, J. A., Le Marshall, J. F., & Treadon, R. E. (2007). A two-season impact study of satellite and in situ data in the NCEP Global Data Assimilation System. Weather and Forecasting, 22(4), 887.

    Article  Google Scholar 

  • Zhang, X., Xiao, Q., & Fitzpatrick, P. J. (2007). The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Monthly Weather Review,135(2), 526.

Download references

Acknowledgements

First author is thankful to the Director, Space Applications Centre for providing him an opportunity to participate in the Satellite Meteorology and Oceanography Research and Training (SMART) programme of MOSDAC; Dr. V. Sathiyamoorthy and Dr. Satya Prakash Ojha for their kind help and support. He is also grateful to SVNIT for financial support in the form of SRF-ship. The authors are grateful to the anonymous referees for their valuable comments and suggestions, which led to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiren Satishkumar Lekhadiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekhadiya, H.S., Jana, R.K. Impact of the Assimilation of INSAT-3D Sounder Retrieved Temperature and Humidity Profiles on Extreme Rainfall Event Forecast. J Indian Soc Remote Sens 49, 1985–1995 (2021). https://doi.org/10.1007/s12524-021-01369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01369-8

Keywords

Navigation