Skip to main content
Log in

Topology-Preserving 3D Image Segmentation Based on Hyperelastic Regularization

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Image segmentation is to extract meaningful objects from a given image. For degraded images due to occlusions, obscurities or noises, the accuracy of the segmentation result can be severely affected. To alleviate this problem, prior information about the target object is usually introduced. In Chan et al. (J Math Imaging Vis 60(3):401–421, 2018), a topology-preserving registration-based segmentation model was proposed, which is restricted to segment 2D images only. In this paper, we propose a novel 3D topology-preserving registration-based segmentation model with the hyperelastic regularization, which can handle both 2D and 3D images. The existence of the solution of the proposed model is established. We also propose a converging iterative scheme to solve the proposed model. Numerical experiments have been carried out on the synthetic and real images, which demonstrate the effectiveness of our proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Badshah, N., Chen, K.: Image selective segmentation under geometrical constraints using an active contour approach. Commun. Comput. Phys. 7(4), 759 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balafar, M.A., Ramli, A.R., Saripan, M.I., Mashohor, S.: Review of brain MRI image segmentation methods. Artif. Intell. Rev. 33(3), 261–274 (2010)

    Article  Google Scholar 

  3. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the solution of linear systems: building blocks for iterative methods, vol. 43. SIAM (1994)

  4. Bers, L., et al.: Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Am. Math. Soc. 83(6), 1083–1100 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Broit, C.: Optimal registration of deformed images. Ph.D. Thesis, University of Pennsylvania, USA (1981)

  6. Brown, E.S., Chan, T.F., Bresson, X.: Completely convex formulation of the Chan–Vese image segmentation model. Int. J. Comput. Vis. 98(1), 103–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burger, M., Modersitzki, J., Ruthotto, L.: A hyperelastic regularization energy for image registration. SIAM J. Sci. Comput. 35(1), B132–B148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Chan, H.L., Yan, S., Lui, L.M., Tai, X.C.: Topology-preserving image segmentation by Beltrami representation of shapes. J. Math. Imaging Vis. 60(3), 401–421 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, T., Sandberg, B., Vese, L.: Active contours without edges for textured images. CAM report pp. 02–28 (2002)

  11. Chan, T., Zhu, W.: Level set based shape prior segmentation. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 1164–1170. IEEE (2005)

  12. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000)

    Article  Google Scholar 

  14. Chan, T.F., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  15. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  16. Chen, K., Grapiglia, G.N., Yuan, J., Zhang, D.: Improved optimization methods for image registration problems. Numer. Algorithms 80(2), 305–336 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christensen, G.E., Rabbitt, R.D., Miller, M.I., et al.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  18. Chumchob, N., Chen, K., Brito, C.: A fourth-order variational image registration model and its fast multigrid algorithm. Multisc. Model. Simul. 9(1), 89–128 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cremers, D., Sochen, N., Schnörr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: International Conference on Scale-Space Theories in Computer Vision, pp. 388–400. Springer (2003)

  20. Diehl, M., Messerer, F.: Local convergence of generalized Gauss–Newton and sequential convex programming. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 3942–3947. IEEE (2019)

  21. Droske, M., Rumpf, M.: A variational approach to nonrigid morphological image registration. SIAM J. Appl. Math. 64(2), 668–687 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fischer, B., Modersitzki, J.: Fast diffusion registration. Contemp. Math. 313, 117–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fischer, B., Modersitzki, J.: Curvature based image registration. J. Math. Imaging Vis. 18(1), 81–85 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fischer, B., Modersitzki, J.: A unified approach to fast image registration and a new curvature based registration technique. Linear Algebra Appl. 380, 107–124 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gardiner, F.P., Lakic, N.: Quasiconformal Teichmuller Theory, vol. 76. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  26. Getreuer, P.: Chan–Vese segmentation. Image Process. On Line 2, 214–224 (2012)

    Article  Google Scholar 

  27. Gout, C., Le Guyader, C., Vese, L.: Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods. Numer. algorithms 39(1–3), 155–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Haber, E., Modersitzki, J.: Numerical methods for volume preserving image registration. Inverse Prob. 20(5), 1621 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 726–733. Springer (2006)

  30. Haber, E., Modersitzki, J.: A multilevel method for image registration. SIAM J. Sci. Comput. 27(5), 1594–1607 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Haber, E., Modersitzki, J.: Image registration with guaranteed displacement regularity. Int. J. Comput. Vis. 71(3), 361–372 (2007)

    Article  Google Scholar 

  32. Haber, E., Modersitzki, J.: Intensity gradient based registration and fusion of multi-modal images. Methods Inf. Med. 46(03), 292–299 (2007)

    Article  Google Scholar 

  33. Heimann, T., Meinzer, H.P.: Statistical shape models for 3d medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  34. Heldmann, S.: Multimodal registration of MR images with a novel least-squares distance measure. In: Medical Imaging 2010: Image Processing, vol. 7623, p. 76230A. International Society for Optics and Photonics (2010)

  35. Ibrahim, M., Chen, K., Brito-Loeza, C.: A novel variational model for image registration using Gaussian curvature. Geom. Imaging Comput. 1(4), 417–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  37. Li, B., Acton, S.T.: Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16(8), 2096–2106 (2007)

    Article  MathSciNet  Google Scholar 

  38. Lie, J., Lysaker, M., Tai, X.C.: A variant of the level set method and applications to image segmentation. Math. Comput. 75(255), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  40. Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press on Demand, Oxford (2004)

    MATH  Google Scholar 

  41. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration, vol. 6. SIAM, Providence (2009)

    Book  MATH  Google Scholar 

  42. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)

    MATH  Google Scholar 

  44. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  45. Roberts, M., Chen, K., Irion, K.L.: A convex geodesic selective model for image segmentation. J. Math. Imaging and Vis. 61(4), 482–503 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ruthotto, L.: Hyperelastic image registration: theory, numerical methods, and applications. Ph.D. Thesis, Verlag nicht ermittelbar (2012)

  47. Thiruvenkadam, S.R., Chan, T.F., Hong, B.W.: Segmentation under occlusions using selective shape prior. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 191–202. Springer (2007)

  48. Zhang, D., Chen, K.: A novel diffeomorphic model for image registration and its algorithm. J. Math. Imaging Vis. 60(8), 1261–1283 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, J., Chen, K.: Variational image registration by a total fractional-order variation model. J. Comput. Phys. 293, 442–461 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, J., Chen, K., Gould, D.A.: A fast algorithm for automatic segmentation and extraction of a single object by active surfaces. Int. J. Comput. Math. 92(6), 1251–1274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, J., Chen, K., Yu, B., Gould, D.A.: A local information based variational model for selective image segmentation. Inverse Probl. Imaging 8(1), 293 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Jan Modersitzki for his FAIR package [41] (https://github.com/C4IR/FAIR.m). We would also like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of this manuscript. This work is partly supported by HKRGC GRF (Project ID: 2130656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Ming Lui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Computation of A in (27)

\(A = I_{3}\otimes (A_{1}^{T},A_{2}^{T},A_{3}^{T})^{T}\), \(A_{1} = I_{(n_{3}+1)}\otimes I_{(n_{2}+1)}\otimes \partial _{n_{1}}^{1,h_{1}}\), \(A_{2}=I_{(n_{3}+1)}\otimes \partial _{n_{2}}^{1,h_{2}}\otimes I_{(n_{1}+1)}\), \(A_{3}=\partial _{n_{3}}^{1,h_{3}}\otimes I_{(n_{2}+1)}\otimes I_{(n_{1}+1)}\) and

$$\begin{aligned} \partial _{n_{l}}^{1,h_{l}} = \frac{1}{h_{l}}\begin{pmatrix} -1 &{} 1 &{} &{} \\ &{} \cdot &{} \cdot &{} \\ &{} &{} -1 &{} 1 \end{pmatrix}\in {\mathbb {R}}^{n_{l},n_{l}+1},\quad 1\le l \le 3. \end{aligned}$$
(47)

Here, \(\otimes \) indicates Kronecker product.

Computation of \(\varvec{s}(Y)\) and \(\varvec{v}(Y)\) in (28)

In each tetrahedron \(\varOmega ^{i,j,k,l}\), set \(\mathbf{L} ^{i,j,k,l}(\varvec{x})= (L_{1}^{i,j,k,l}(\varvec{x}),L_{2}^{i,j,k,l}(\varvec{x}),L_{3}^{i,j,k,l}(\varvec{x}))= (a^{i,j,k,l}_{1}x_{1}+a^{i,j,k,l}_{2}x_{2}+a^{i,j,k,l}_{3}x_{3}+b_{1}^{i,j,k,l}, a^{i,j,k,l}_{4}x_{1}+a^{i,j,k,l}_{5}x_{2}+a^{i,j,k,l}_{6}x_{3}+b_{2}^{i,j,k,l},a^{i,j,k,l}_{7}x_{1}\)\(+a^{i,j,k,l}_{8}x_{2}+a^{i,j,k,l}_{9}x_{3}+b_{3}^{i,j,k,l})\), which is the linear interpolation for \(\varvec{y}\) in the \(\varOmega ^{i,j,k,l}\). Note that

$$\begin{aligned} \begin{aligned} \partial _{x_{1}} L^{i,j,k,l}_{1}&= a^{i,j,k,l}_{1}, \partial _{x_{2}} L^{i,j,k,l}_{1} = a^{i,j,k,l}_{2},\partial _{x_{3}} L^{i,j,k,l}_{1} = a^{i,j,k,l}_{3},\\ \partial _{x_{1}} L^{i,j,k,l}_{2}&= a^{i,j,k,l}_{4}, \partial _{x_{2}} L^{i,j,k,l}_{2} = a^{i,j,k,l}_{5},\partial _{x_{3}} L^{i,j,k,l}_{2} = a^{i,j,k,l}_{6},\\ \partial _{x_{1}} L^{i,j,k,l}_{3}&= a^{i,j,k,l}_{7}, \partial _{x_{2}} L^{i,j,k,l}_{3} = a^{i,j,k,l}_{8},\partial _{x_{3}} L^{i,j,k,l}_{3} = a^{i,j,k,l}_{9}. \end{aligned} \end{aligned}$$
(48)

Then the following approximation can be built:

$$\begin{aligned}&\int _{\varOmega } \alpha _{s}\phi _{w}(\mathrm {cof}\nabla \varvec{y})+\alpha _{v}\phi _{v}(\det \nabla \varvec{y})\mathrm {d}\varvec{x}\nonumber \\&\quad \approx \frac{h^{3}}{6}\sum _{i=1}^{n}\sum _{j=1}^{n}\sum _{k=1}^{n}\sum _{l=1}^{6}(\alpha _{s}\phi _{w}(s^{i,j,k,l})+\alpha _{v}\phi _{v}(v^{i,j,k,l})), \end{aligned}$$
(49)

where

$$\begin{aligned} s^{i,j,k,l} = \begin{pmatrix} a_{5}^{i,j,k,l}a_{9}^{i,j,k,l}-a_{6}^{i,j,k,l}a_{8}^{i,j,k,l} &{} a_{6}^{i,j,k,l}a_{7}^{i,j,k,l}-a_{4}^{i,j,k,l}a_{9}^{i,j,k,l} &{} a_{4}^{i,j,k,l}a_{8}^{i,j,k,l}-a_{5}^{i,j,k,l}a_{7}^{i,j,k,l} \\ a_{3}^{i,j,k,l}a_{8}^{i,j,k,l}-a_{2}^{i,j,k,l}a_{9}^{i,j,k,l} &{} a_{1}^{i,j,k,l}a_{9}^{i,j,k,l}-a_{3}^{i,j,k,l}a_{7}^{i,j,k,l} &{} a_{2}^{i,j,k,l}a_{7}^{i,j,k,l}-a_{1}^{i,j,k,l}a_{8}^{i,j,k,l} \\ a_{2}^{i,j,k,l}a_{6}^{i,j,k,l}-a_{3}^{i,j,k,l}a_{5}^{i,j,k,l} &{} a_{3}^{i,j,k,l}a_{4}^{i,j,k,l}-a_{1}^{i,j,k,l}a_{6}^{i,j,k,l} &{} a_{1}^{i,j,k,l}a_{5}^{i,j,k,l}-a_{2}^{i,j,k,l}a_{4}^{i,j,k,l} \end{pmatrix} \end{aligned}$$
(50)

and

$$\begin{aligned} \begin{aligned} v^{i,j,k,l}&=a^{i,j,k,l}_{1}a^{i,j,k,l}_{5}a^{i,j,k,l}_{9}+a^{i,j,k,l}_{2}a^{i,j,k,l}_{6}a^{i,j,k,l}_{7}+a^{i,j,k,l}_{4}a^{i,j,k,l}_{8}a^{i,j,k,l}_{3}\\&\quad -a^{i,j,k,l}_{2}a^{i,j,k,l}_{4}a^{i,j,k,l}_{9}-a^{i,j,k,l}_{1}a^{i,j,k,l}_{6}a^{i,j,k,l}_{8}-a^{i,j,k,l}_{3}a^{i,j,k,l}_{5}a^{i,j,k,l}_{7}. \end{aligned} \end{aligned}$$
(51)

In order to write (49) into a compact form, we construct \(D_{l}, 1\le l\le 9\):

$$\begin{aligned} \begin{matrix} D_{1} = [M_{1},0,0], &{} D_{4} = [0,M_{1},0], &{} D_{7} = [0,0,M_{1}],\\ D_{2} = [M_{2},0,0], &{} D_{5} = [0,M_{2},0], &{} D_{8} = [0,0,M_{2}],\\ D_{3} = [M_{3},0,0], &{} D_{6} = [0,M_{3},0], &{} D_{9} = [0,0,M_{3}], \end{matrix} \end{aligned}$$
(52)

where \(M_{1}\), \(M_{2}\) and \(M_{3}\) are the discrete operators of \(\partial _{x_{1}}\), \(\partial _{x_{2}}\) and \(\partial _{x_{3}}\) respectively and how to construct them is shown in “Appendix C”. Then we define \(\varvec{s}(Y)\) and \(\varvec{v}(Y)\) as follows:

$$\begin{aligned} \begin{aligned} \varvec{s}(Y)&= \begin{pmatrix} D_{5}Y\odot D_{9}Y-D_{6}Y\odot D_{8}Y &{} D_{6}Y\odot D_{7}Y-D_{4}Y\odot D_{9}Y &{} D_{4}Y\odot D_{8}Y-D_{5}Y\odot D_{7}Y \\ D_{3}Y\odot D_{8}Y-D_{2}Y\odot D_{9}Y &{} D_{1}Y\odot D_{9}Y-D_{3}Y\odot D_{7}Y &{} D_{2}Y\odot D_{7}Y-D_{1}Y\odot D_{8}Y \\ D_{2}Y\odot D_{6}Y-D_{3}Y\odot D_{5}Y &{} D_{3}Y\odot D_{4}Y-D_{1}Y\odot D_{6}Y &{} D_{1}Y\odot D_{5}Y-D_{2}Y\odot D_{4}Y \end{pmatrix},\\ \varvec{v}(Y)&= D_{1}Y\odot D_{5}Y\odot D_{9}Y + D_{2}Y\odot D_{6}Y\odot D_{7}Y +D_{4}Y\odot D_{8}Y\odot D_{3}Y\\&\quad -D_{2}Y\odot D_{4}Y\odot D_{9}Y-D_{1}Y\odot D_{6}Y\odot D_{8}Y-D_{3}Y\odot D_{5}Y\odot D_{7}Y,\\ \end{aligned} \end{aligned}$$
(53)

where \(\odot \) denotes the Hadamard product of two matrices. Furthermore, set the ith component of \(\varvec{s}(Y)\) as

$$\begin{aligned} \varvec{s}(Y)_{i} = \begin{pmatrix} (D_{5}Y\odot D_{9}Y-D_{6}Y\odot D_{8}Y)_{i} &{} (D_{6}Y\odot D_{7}Y-D_{4}Y\odot D_{9}Y)_{i} &{} (D_{4}Y\odot D_{8}Y-D_{5}Y\odot D_{7}Y)_{i} \\ (D_{3}Y\odot D_{8}Y-D_{2}Y\odot D_{9}Y)_{i} &{} (D_{1}Y\odot D_{9}Y-D_{3}Y\odot D_{7}Y)_{i} &{} (D_{2}Y\odot D_{7}Y-D_{1}Y\odot D_{8}Y)_{i} \\ (D_{2}Y\odot D_{6}Y-D_{3}Y\odot D_{5}Y)_{i} &{} (D_{3}Y\odot D_{4}Y-D_{1}Y\odot D_{6}Y)_{i} &{} (D_{1}Y\odot D_{5}Y-D_{2}Y\odot D_{4}Y)_{i} \end{pmatrix}. \end{aligned}$$
(54)

Then we can see that \(\varvec{s}(Y)\) and \(\varvec{v}(Y)\) contain all approximated cofactors and determinants for all tetrahedrons.

Computation of \(M_{1}\), \(M_{2}\) and \(M_{3}\) in (52)

We first investigate the linear approximation \(L(x_{1},x_{2},x_{3}) = a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}+b\) in the tetrahedron \(V_{3}V_{4}V_{5}V_{7}\) (Fig. 1). Denote these 4 vertices of this tetrahedron by \(V_{3} = \varvec{x}^{1,1,1}\), \(V_{4} = \varvec{x}^{2,2,2}\), \(V_{5} = \varvec{x}^{3,3,3}\) and \(V_{7} = \varvec{x}^{4,4,4}\). Set \(L(\varvec{x}^{1,1,1}) = y^{1,1,1}\), \(L(\varvec{x}^{2,2,2}) = y^{2,2,2}\), \(L(\varvec{x}^{3,3,3}) = y^{3,3,3}\) and \(L(\varvec{x}^{4,4,4}) = y^{4,4,4}\). Substituting \(V_{3},V_{4}\), \(V_{5}\) and \(V_{7}\) into L, we get

$$\begin{aligned} \begin{pmatrix} x_{1}^{1} &{} x_{2}^{1} &{} x_{3}^{1} &{} 1\\ x_{1}^{2} &{} x_{2}^{2} &{} x_{3}^{2} &{} 1\\ x_{1}^{3} &{} x_{2}^{3} &{} x_{3}^{3} &{} 1\\ x_{1}^{4} &{} x_{2}^{4} &{} x_{3}^{4} &{} 1 \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \\ b \end{pmatrix} = \begin{pmatrix} y^{1,1,1}\\ y^{2,2,2}\\ y^{3,3,3}\\ y^{4,4,4} \end{pmatrix}. \end{aligned}$$
(55)

Then eliminating b, we obtain

$$\begin{aligned} \begin{pmatrix} x_{1}^{1}-x_{1}^{4} &{} x_{2}^{1}-x_{2}^{4} &{} x_{3}^{1}-x_{1}^{4} \\ x_{1}^{2}-x_{2}^{4} &{} x_{2}^{2}-x_{2}^{4} &{} x_{3}^{2}-x_{2}^{4} \\ x_{1}^{3}-x_{3}^{4} &{} x_{2}^{3}-x_{2}^{4} &{} x_{3}^{3}-x_{3}^{4} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = \begin{pmatrix} y^{1,1,1}-y^{4,4,4}\\ y^{2,2,2}-y^{4,4,4}\\ y^{3,3,3}-y^{4,4,4} \end{pmatrix}. \end{aligned}$$
(56)

Set

$$\begin{aligned} C = \begin{pmatrix} x_{1}^{1}-x_{1}^{4} &{} x_{2}^{1}-x_{2}^{4} &{} x_{3}^{1}-x_{1}^{4} \\ x_{1}^{2}-x_{2}^{4} &{} x_{2}^{2}-x_{2}^{4} &{} x_{3}^{2}-x_{2}^{4} \\ x_{1}^{3}-x_{3}^{4} &{} x_{2}^{3}-x_{2}^{4} &{} x_{3}^{3}-x_{3}^{4} \end{pmatrix}. \end{aligned}$$
(57)

Then we have

$$\begin{aligned} \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = \frac{1}{\det }\begin{pmatrix} C_{11} &{} C_{21} &{} C_{31} \\ C_{12} &{} C_{22} &{} C_{32} \\ C_{13} &{} C_{23} &{} C_{33} \end{pmatrix} \begin{pmatrix} y^{1,1,1}-y^{4,4,4}\\ y^{2,2,2}-y^{4,4,4}\\ y^{3,3,3}-y^{4,4,4} \end{pmatrix}, \end{aligned}$$
(58)

where \(\det \) is the determinant of C and \(C_{ij}\) is the (ij) cofactor of C. Since the domain \(\varOmega \) has been divided into N voxels, in order to find all \(a_{1}\) in the tetrahedron with the same position of each voxel, we can make it as follows:

$$\begin{aligned} \begin{pmatrix} a_{1}^{1} \\ \vdots \\ a_{1}^{N} \end{pmatrix} = \frac{1}{\det }(C_{11}(E_{3}Y-E_{7}Y)+C_{21}(E_{4}Y-E_{7}Y)+C_{31}(E_{5}Y-E_{7}Y)), \end{aligned}$$
(59)

where \(E_{l},l\in \{3,4,5,7\}\) is a matrix which extracts the corresponding positions of the vertices. Set \(G_{1} = \frac{1}{\det }(C_{11}(E_{3}-E_{7})+C_{21}(E_{4}-E_{7})+C_{31}(E_{5}-E_{7}))\). For other 5 tetrahedrons, we can also build \(G_{l}, l\in \{2,...,6\}\). Then we get

$$\begin{aligned} M_{1} = \begin{pmatrix} G_{1}\\ \vdots \\ G_{6} \end{pmatrix}. \end{aligned}$$
(60)

Similarly, we can obtain \(M_{2}\) and \(M_{3}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Lui, L.M. Topology-Preserving 3D Image Segmentation Based on Hyperelastic Regularization. J Sci Comput 87, 74 (2021). https://doi.org/10.1007/s10915-021-01433-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01433-y

Keywords

Navigation