Skip to main content
Log in

New nanoscale band-to-band tunneling junctionless GNRFETs: potential high-performance devices for the ultrascaled regime

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

High-performance sub-10-nm field-effect transistors (FETs) are considered to be a prerequisite for the development of nanoelectronics and modern integrated circuits. Herein, new band-to-band tunneling (BTBT) junctionless (JL) graphene nanoribbon field-effect transistors (GNRFETs) endowed with sub-10-nm gate length are proposed using a quantum transport simulation. The nonequilibrium Green’s function (NEGF) formalism is used in quantum simulations considering the self-consistent electrostatics and the ballistic transport limit. The computational assessment includes the IDSVGS transfer characteristics, the potential and electron density distributions, the current spectrum, the ambipolar behavior, the leakage current, the subthreshold swing, the current ratio, and the scaling capability. It is found that BTBT JL-GNRFETs can provide subthermionic subthreshold swings and moderate current ratios for sub-10-nm gate lengths. Moreover, a new doping profile, based on the use of lateral lightly n-type-doped pockets, is adopted to boost their performance. The numerical results reveal that BTBT JL-GNRFETs with the proposed doping profile can exhibit improved performance in comparison with uniformly doped BTBT JL-GNRFETs. In addition, the role of the length and n-type doping concentration of the pockets in boosting the device performance is also studied and analyzed while considering the scaling capability of such devices, revealing that low doping concentrations and long pocket lengths are useful for performance improvement. The merits of the BTBT JL-GNRFETs based on the proposed nonuniform doping profile, namely sub-10-nm scale, steep subthermionic subthreshold swing, low leakage current, and improved current ratio and ambipolar behavior, make them promising nanodevices for use in modern nanoelectronics and high-performance integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ilatikhameneh, H., Ameen, T., Novakovic, B., Tan, Y., Klimeck, G., Rahman, R.: Saving Moore’s law down to 1 nm channels with anisotropic effective mass. Sci. Rep. 6(1), 31501 (2016). https://doi.org/10.1038/srep31501

    Article  Google Scholar 

  2. Khan, H.N., Hounshell, D.A., Fuchs, E.R.H.: Science and research policy at the end of Moore’s law. Nat. Electron. 1(1), 14–21 (2018). https://doi.org/10.1038/s41928-017-0005-9

    Article  Google Scholar 

  3. Leiserson, C.E., et al.: (2020) There’s plenty of room at the Top: what will drive computer performance after Moore’s law?”. Science 368(6495), eaam9744 (2020). https://doi.org/10.1126/science.aam9744

    Article  Google Scholar 

  4. Ye, P., Ernst, T., Khare, M.V.: The last silicon transistor: nanosheet devices could be the final evolutionary step for Moore’s Law. IEEE Spectr. 56(8), 30–35 (2019). https://doi.org/10.1109/MSPEC.2019.8784120

    Article  Google Scholar 

  5. Zhou, W., Zhang, S., Guo, S., Wang, Y., Lu, J., Ming, X., Li, Z., Qu, H., Zeng, H.: Designing sub-10-nm metal-oxide-semiconductor field-effect transistors via ballistic transport and disparate effective mass: the case of two-dimensional BiN. Phys. Rev. Appl. (2020). https://doi.org/10.1103/PhysRevApplied.13.044066

    Article  Google Scholar 

  6. Li, M.-Y., Su, S.-K., Wong, H.-S.P., Li, L.-J.: How 2D semiconductors could extend Moore’s law. Nature 567(7747), 169–170 (2019). https://doi.org/10.1038/d41586-019-00793-8

    Article  Google Scholar 

  7. Fiori, G., et al.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014). https://doi.org/10.1038/nnano.2014.207

    Article  Google Scholar 

  8. Chhowalla, M., Jena, D., Zhang, H.: Two-dimensional semiconductors for transistors. Nat. Rev. Mater. (2016). https://doi.org/10.1038/natrevmats.2016.52

    Article  Google Scholar 

  9. Tamersit, K., Jooq, M.K.Q., Moaiyeri, M.H.: Computational investigation of negative capacitance coaxially gated carbon nanotube field-effect transistors. IEEE Trans. Electron Devices 68(1), 376–384 (2021). https://doi.org/10.1109/TED.2020.3037277

    Article  Google Scholar 

  10. Ionescu, A.M., Riel, H.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). https://doi.org/10.1038/nature10679

    Article  Google Scholar 

  11. Appenzeller, J., Lin, Y.-M., Knoch, J., Avouris, P.: Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. (2004). https://doi.org/10.1103/PhysRevLett.93.196805

    Article  Google Scholar 

  12. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling. Nano Lett. 7(5), 1160–1164 (2007). https://doi.org/10.1021/nl062843f

    Article  Google Scholar 

  13. Tamersit, K.: A novel band-to-band tunneling junctionless carbon nanotube field-effect transistor with lightly doped pocket: Proposal, assessment, and quantum transport analysis. Phys. E 128, 114609 (2021). https://doi.org/10.1016/j.physe.2020.114609

    Article  Google Scholar 

  14. Liang, G., et al.: Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: a full real-space quantum transport simulation. J. Appl. Phys. 102(5), 054307 (2007). https://doi.org/10.1063/1.2775917

    Article  Google Scholar 

  15. Appenzeller, J., et al.: Comparing carbon nanotube transistors—the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52(12), 2568–2576 (2005). https://doi.org/10.1109/TED.2005.859654

    Article  Google Scholar 

  16. Yousefi, R., et al.: A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET. Superlattices Microstruct. 60, 169–178 (2013). https://doi.org/10.1016/j.spmi.2013.05.003

    Article  Google Scholar 

  17. Yousefi, R., et al.: A computational study of strain effects in the band-to-band-tunneling carbon nanotube field-effect transistors. Int. J. Mod. Phys. B 26(29), 1250155 (2012). https://doi.org/10.1142/S021797921250155X

    Article  MATH  Google Scholar 

  18. Algul, B.P., Kodera, T., Oda, S., Uchida, K.: Study on device parameters of carbon nanotube field electron transistors to realize steep subthreshold slope of less than 60 mV/decade. Jpn. J. Appl. Phys. 50(4), 04DN01 (2011). https://doi.org/10.1143/JJAP.50.04DN01

    Article  Google Scholar 

  19. Koswatta, S.O., et al.: Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87(25), 253107 (2005). https://doi.org/10.1063/1.2146065

    Article  Google Scholar 

  20. Bousari, N.B., et al.: Improving the electrical characteristics of nanoscale triple-gate junctionless FinFET using gate oxide engineering. AEU-Int. J. Electron. C. 108, 226–234 (2019). https://doi.org/10.1016/j.aeue.2019.06.017

    Article  Google Scholar 

  21. Jegadheesan, V., et al.: Improved statistical variability and delay performance with junctionless inserted oxide FinFET. AEU-Int. J. Electron. C. 115, 153030 (2020). https://doi.org/10.1016/j.aeue.2019.153030

    Article  Google Scholar 

  22. Lee, C.-W., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.-P.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010). https://doi.org/10.1016/j.sse.2009.12.003

    Article  Google Scholar 

  23. Lee, C.-W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.-P.: Junctionless multigate field effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009). https://doi.org/10.1063/1.3079411

    Article  Google Scholar 

  24. Colinge, J.P., Kranti, A., Yan, R., Lee, C.W., Ferain, I., Yu, R., Dehdashti Akhavan, N., Razavi, P.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65–66, 33–37 (2011). https://doi.org/10.1016/j.sse.2011.06.004

    Article  Google Scholar 

  25. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010). https://doi.org/10.1038/nnano.2010.89

    Article  Google Scholar 

  26. Zhao, P., Guo, J.: Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods. J. Appl. Phys. 105(3), 034503-1-034503–7 (2009). https://doi.org/10.1063/1.3073875

    Article  Google Scholar 

  27. Tamersit, K., et al.: Double-gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180–4191 (2016). https://doi.org/10.1109/JSEN.2016.2550492

    Article  Google Scholar 

  28. Tamersit, K.: Sub-10 nm junctionless carbon nanotube field-effect transistors with improved performance. AEU-Int. J. Electron. C. 124, 153354 (2020). https://doi.org/10.1016/j.aeue.2020.153354

    Article  Google Scholar 

  29. Tamersit, K.: Improved performance of nanoscale junctionless carbon nanotube tunneling FETs using dual-material source gate design: a quantum simulation study. AEU-Int. J. Electron. C. 127, 153491 (2020). https://doi.org/10.1016/j.aeue.2020.153491

    Article  Google Scholar 

  30. Tamersit, K.: An ultra-sensitive gas nanosensor based on asymmetric dual-gate graphene nanoribbon field-effect transistor: proposal and investigation. J. Comput. Electron. 18(3), 846–855 (2019). https://doi.org/10.1007/s10825-019-01349-9

    Article  Google Scholar 

  31. Jain, A.K., Singh, J., Kumar, M.J.: Investigation of the scalability of emerging nanotube junctionless FETs using an intrinsic pocket. IEEE J. Electron Devices Soc. 7, 888–896 (2019). https://doi.org/10.1109/JEDS.2019.2935319

    Article  Google Scholar 

  32. Tamersit, K.: Performance enhancement of an ultra-scaled double-gate graphene nanoribbon tunnel field-effect transistor using channel doping engineering: quantum simulation study. AEU-Int. J. Electron. C. 122, 153287 (2020). https://doi.org/10.1016/j.aeue.2020.153287

    Article  Google Scholar 

  33. Datta, S.: Nanoscale device modeling: THE Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000). https://doi.org/10.1006/spmi.2000.0920

    Article  Google Scholar 

  34. Tamersit, K., et al.: A computationally efficient hybrid approach based on artificial neural networks and the wavelet transform for quantum simulations of graphene nanoribbon FETs. J. Comput. Electron. 18(3), 813–825 (2019). https://doi.org/10.1007/s10825-019-01350-2

    Article  Google Scholar 

  35. Tamersit, K.: Performance assessment of a new radiation dosimeter based on carbon nanotube field-effect transistor: a quantum simulation study. IEEE Sens. J. 19(9), 3314–3321 (2019). https://doi.org/10.1109/JSEN.2019.2894440

    Article  Google Scholar 

  36. Tamersit, K., et al.: Carbon nanotube field-effect transistor with vacuum gate dielectric for label-free detection of DNA molecules: a computational investigation. IEEE Sens. J. 19(20), 9263–9270 (2019). https://doi.org/10.1109/JSEN.2019.2925597

    Article  Google Scholar 

  37. Zhao, P., Chauhan, J., Guo, J.: Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9(2), 684–688 (2009). https://doi.org/10.1021/nl803176x

    Article  Google Scholar 

  38. Tamersit, K.: A computational study of short-channel effects in double-gate junctionless graphene nanoribbon field-effect transistors. J. Comput. Electron. 18(4), 1214–1221 (2019). https://doi.org/10.1007/s10825-019-01375-7

    Article  Google Scholar 

  39. Chin, S.-K., et al.: Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Trans. Electron Devices 57(11), 3144–3152 (2010). https://doi.org/10.1109/TED.2010.2065809

    Article  Google Scholar 

  40. Tamersit, K.: Computational study of pn carbon nanotube tunnel field-effect transistor. IEEE Trans. Electron Devices 67(2), 704–710 (2020). https://doi.org/10.1109/TED.2019.2957050

    Article  Google Scholar 

  41. Yoon, Y., et al.: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Trans. Electron Devices 55(9), 2314–2323 (2008). https://doi.org/10.1109/TED.2008.928021

    Article  Google Scholar 

  42. Tamersit, K.: Boosting the performance of an ultrascaled carbon nanotube junctionless tunnel field-effect transistor using an ungated region: NEGF simulation. J. Comput. Electron. 18(4), 1222–1228 (2019). https://doi.org/10.1007/s10825-019-01385-5

    Article  Google Scholar 

  43. Tamersit, K.: A new ultra-scaled graphene nanoribbon junctionless tunneling field-effect transistor: proposal, quantum simulation, and analysis. J. Comput. Electron. 19(1), 170–176 (2019). https://doi.org/10.1007/s10825-019-01422-3

    Article  Google Scholar 

  44. Bayani, A.H., Dideban, D., Vali, M., Moezi, N.: Germanene nanoribbon tunneling field effect transistor (GeNR-TFET) with a 10 nm channel length: analog performance, doping and temperature effects. Semicond. Sci. Technol. 31(4), 045009 (2016). https://doi.org/10.1088/0268-1242/31/4/045009

    Article  Google Scholar 

  45. Tamersit, K.: Quantum simulation of a junctionless carbon nanotube field-effect transistor with binary metal alloy gate electrode. Superlattices Microstruct. 128, 252–259 (2019). https://doi.org/10.1016/j.spmi.2019.02.001

    Article  Google Scholar 

  46. Tamersit, K.: Improving the performance of a junctionless carbon nanotube field-effect transistor using a split-gate. AEU-Int. J. Electron. C. 115, 153035 (2020). https://doi.org/10.1016/j.aeue.2019.153035

    Article  Google Scholar 

  47. Jooq, M.K.Q., et al.: Ultra-compact ternary logic gates based on negative capacitance carbon nanotube FETs. IEEE Trans. Circuits Syst. II Express Briefs (2020). https://doi.org/10.1109/TCSII.2020.3047265

    Article  Google Scholar 

  48. Tamersit, K., Kotti, M., Fakhfakh, M.: A new pressure microsensor based on dual-gate graphene field-effect transistor with a vertically movable top-gate: proposal, analysis, and optimization. AEU-Int. J. Electron. C. 124, 153346 (2020). https://doi.org/10.1016/j.aeue.2020.153346

    Article  Google Scholar 

  49. Anvarifard, M.K., et al.: Profound analysis on sensing performance of Nanogap SiGe source DM-TFET biosensor. J. Mater. Sci. Mater. Electron. 31(24), 22699–22712 (2020). https://doi.org/10.1007/s10854-020-04795-5

    Article  Google Scholar 

Download references

Acknowledgements

K.T. gratefully acknowledges the sponsorship and support of the General Directorate for the Scientific Research and Technological Development (DGRSDT—MESRS), Algeria. The author is also grateful to the PIMIS of Guelma University, Guelma, Algeria, for providing computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Tamersit.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamersit, K. New nanoscale band-to-band tunneling junctionless GNRFETs: potential high-performance devices for the ultrascaled regime. J Comput Electron 20, 1147–1156 (2021). https://doi.org/10.1007/s10825-021-01690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01690-y

Keywords

Navigation