Skip to main content
Log in

Ultra-high-sensitive sensor based on a metal–insulator–metal waveguide coupled with cross cavity

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a high-sensitive plasmonic sensor based on metal–insulator–metal waveguide coupled with the interesting metal nanoracetrack defects in a cross cavity is proposed and investigated. The sensing characteristics of the proposed design are analyzed by the means of finite difference time domain method which is embedded in the commercial simulator R-Soft. The positions of transmission peaks can be easily manipulated by adjusting both the radius and the distance between the centers of the two racetrack defects in the cavity. The achieved results exhibit a linear relationship between the material’s refractive indices and theirs corresponding wavelengths of resonance, whereas the obtained maximum linear sensitivity is 3410 nm/RIU which corresponds to a sensing resolution as precise as \(2.93 \times 10^{-6}\) RIU. The proposed sensor has great impact on different technologies advancement as it can be implemented in high performance nanosensors and bio-sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Al-mahmod, M.J., Hyder, R., Islam, M.Z.: Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications. Photonics Nanostruct. Fundam. Appl. 25, 52–57 (2017). https://doi.org/10.1016/j.photonics.2017.05.001

    Article  Google Scholar 

  2. Alipour, A., Mir, A., Farmani, A.: Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor. Optics Laser Technol. 127, 106201 (2020). https://doi.org/10.1016/j.optlastec.2020.106201

    Article  Google Scholar 

  3. Ben salah, H., Hocini, A., Temmar, M..N., Khedrouche, D.: Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor. Chinese J. Phys. 61, 86–97 (2019)

    Article  Google Scholar 

  4. Butt, M., Khonina, S., Kazanskiy, N.: An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 202, 163655 (2020). https://doi.org/10.1016/j.ijleo.2019.163655

    Article  Google Scholar 

  5. Chao, C.T.C., Chau, Y.F.C., Huang, H.J., Kumara, N.T.R.N., Kooh, M.R.R., Lim, C.M., Chiang, H.P.: Highly sensitive and tunable plasmonic sensor based on a nanoring resonator with silver nanorods. Nanomaterials 10(7), 1399 (2020). https://doi.org/10.3390/nano10071399

    Article  Google Scholar 

  6. Chau, Y.F.C., Chao, C.T.C., Chiang, H.P.: Ultra-broad bandgap metal-insulator-metal waveguide filter with symmetrical stubs and defects. Results Phys. 17, 103116 (2020). https://doi.org/10.1016/j.rinp.2020.103116

    Article  Google Scholar 

  7. Chau, Y.F.C., Chao, C.T.C., Huang, H.J., Kumara, N.T.R.N., Lim, C.M., Chiang, H.P.: Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled t-shape cavity with metal nanorod defects. Nanomaterials 9(10), 1433 (2019). https://doi.org/10.3390/nano9101433

    Article  Google Scholar 

  8. Cush, R., Cronin, J., Stewart, W., Maule, C., Molloy, J., Goddard, N.: The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part i: Principle of operation and associated instrumentation. Biosens. Bioelectron. 8(7–8), 347–354 (1993). https://doi.org/10.1016/0956-5663(93)80073-x

    Article  Google Scholar 

  9. Danaie, M., Geravand, A.: Design of low-cross-talk metal-insulator-metal plasmonic waveguide intersections based on proposed cross-shaped resonators. J. Nanophotonics 12(04), 1 (2018). https://doi.org/10.1117/1.jnp.12.046009

    Article  Google Scholar 

  10. Danaie, M., Shahzadi, A.: Design of a high-resolution metal-insulator-metal plasmonic refractive index sensor based on a ring-shaped si resonator. Plasmonics 14(6), 1453–1465 (2019). https://doi.org/10.1007/s11468-019-00926-9

    Article  Google Scholar 

  11. Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Physical Review B 72(7) (2005). https://doi.org/10.1103/physrevb.72.075405

  12. Dionne, J.A., Sweatlock, L.A., Sheldon, M.T., Alivisatos, A.P., Atwater, H.A.: Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 16(1), 295–306 (2010). https://doi.org/10.1109/jstqe.2009.2034983

    Article  Google Scholar 

  13. Dolatabady, A., Granpayeh, N.: All-optical logic gates in plasmonic metal-insulator-metal nanowaveguide with slot cavity resonator. J. Nanophotonics 11(2), 026001 (2017). https://doi.org/10.1117/1.jnp.11.026001

    Article  Google Scholar 

  14. Fan, S., Suh, W., Joannopoulos, J.D.: Temporal coupled-mode theory for the fano resonance in optical resonators. J. Optical Soc. Am. A 20(3), 569 (2003). https://doi.org/10.1364/josaa.20.000569

    Article  Google Scholar 

  15. Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photonics 4(2), 83–91 (2010). https://doi.org/10.1038/nphoton.2009.282

    Article  Google Scholar 

  16. Haffar, R.E., Farkhsi, A., Mahboub, O.: Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Applied Physics A 126(7) (2020). https://doi.org/10.1007/s00339-020-03660-w

  17. Han, Z., Forsberg, E., He, S.: Surface plasmon bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett. 19(2), 91–93 (2007). https://doi.org/10.1109/lpt.2006.889036

    Article  Google Scholar 

  18. Hocini, A., Ben salah, H., Khedrouche, D., Melouki, N.: A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal-insulator-metal structure. Optical and Quantum Electronics 52(7) (2020). https://doi.org/10.1007/s11082-020-02446-x

  19. Homola, J., Koudela, I., Yee, S.S.: Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens. Actuat. B: Chem. 54(1–2), 16–24 (1999). https://doi.org/10.1016/s0925-4005(98)00322-0

    Article  Google Scholar 

  20. Janfaza, M., Mansouri-Birjandi, M.A., Tavousi, A.: Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on bragg gratings. Optics Commun. 440, 75–82 (2019). https://doi.org/10.1016/j.optcom.2019.01.062

    Article  Google Scholar 

  21. Janz, S., Densmore, A., Xu, D.X., Waldron, P., Lapointe, J., Schmid, J.H., Mischki, T., Lopinski, G., Delage, A., McKinnon, R., Cheben, P., Lamontagne, B.: Silicon photonic wire waveguide sensors. In: Integrated Analytical Systems, pp. 229–264. Springer New York (2009)

  22. Kazanskiy, N., Butt, M., Khonina, S.: Nanodots decorated MIM semi-ring resonator cavity for biochemical sensing applications. Photonics Nanostruct. Fundam. Appl. 42, 100836 (2020). https://doi.org/10.1016/j.photonics.2020.100836

    Article  Google Scholar 

  23. Khani, S., Danaie, M., Rezaei, P.: Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Physica E 113, 25–34 (2019). https://doi.org/10.1016/j.physe.2019.04.015

    Article  Google Scholar 

  24. Le, K.Q., Ngo, Q.M., Nguyen, T.K.: Nanostructured metal-insulator-metal metamaterials for refractive index biosensing applications: Design, fabrication, and characterization. IEEE J. Sel. Top. Quantum Electron. 23(2), 388–393 (2017). https://doi.org/10.1109/jstqe.2016.2615944

    Article  Google Scholar 

  25. Li, D., Du, K., Liang, S., Zhang, W., Mei, T.: Wide band dispersionless slow light in hetero-MIM plasmonic waveguide. Opt. Express 24(20), 22432 (2016). https://doi.org/10.1364/oe.24.022432

    Article  Google Scholar 

  26. Li, X., Wei, Z., Liu, Y., Zhong, N., Tan, X., Shi, S., Liu, H., Liang, R.: Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. Phys. Lett. A 380(1–2), 232–237 (2016). https://doi.org/10.1016/j.physleta.2015.10.035

    Article  Google Scholar 

  27. Lin, Q., Zhai, X., Wang, L.L., Luo, X., Liu, G.D., Liu, J.P., Xia, S.X.: A novel design of plasmon-induced absorption sensor. Appl. Phys. Exp. 9(6), 062002 (2016). https://doi.org/10.7567/apex.9.062002

    Article  Google Scholar 

  28. Luo, L., Feng, G., Zhou, S., Tang, T.: Theoretical study of a refractive-index sensor based on directional coupling between metal-insulator-metal waveguides. Optik 127(4), 2149–2152 (2016). https://doi.org/10.1016/j.ijleo.2015.11.106

    Article  Google Scholar 

  29. Ma, Y., Farrell, G., Semenova, Y., Chan, H.P., Wu, Q.: Hybrid plasmonic biosensor for simultaneous measurement of both thickness and refractive index. Infrared Phys.Technol. 60, 134–136 (2013). https://doi.org/10.1016/j.infrared.2013.04.001

    Article  Google Scholar 

  30. Madadi, Z., Abedi, K., Darvish, G., Khatir, M.: An infrared narrow band plasmonic perfect absorber as a sensor. Optik 183, 670–676 (2019). https://doi.org/10.1016/j.ijleo.2019.02.078

    Article  Google Scholar 

  31. Neutens, P., Dorpe, P.V., Vlaminck, I.D., Lagae, L., Borghs, G.: Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat. Photonics 3(5), 283–286 (2009). https://doi.org/10.1038/nphoton.2009.47

    Article  Google Scholar 

  32. Passaro, V.M.N., Troia, B., Notte, M.L., Leonardis, F.D.: Photonic resonant microcavities for chemical and biochemical sensing. RSC Adv. 3(1), 25–44 (2013). https://doi.org/10.1039/c2ra21984k

    Article  Google Scholar 

  33. Rahmatiyar, M., Afsahi, M., Danaie, M.: Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6), 2169–2176 (2020). https://doi.org/10.1007/s11468-020-01238-z

    Article  Google Scholar 

  34. Rakhshani, M.R.: Refractive index sensor based on concentric triple racetrack resonators side-coupled to metal-insulator-metal waveguide for glucose sensing. J. Optical Soc. Am. B 36(10), 2834 (2019). https://doi.org/10.1364/josab.36.002834

    Article  Google Scholar 

  35. Sadeghi, T., Golmohammadi, S., Farmani, A., Baghban, H.: Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory. Appl. Phys. B 125(10) (2019). https://doi.org/10.1007/s00340-019-7305-x

  36. Shibayama, J., Kawai, H., Yamauchi, J., Nakano, H.: Analysis of a 3d MIM waveguide-based plasmonic demultiplexer using the TRC-FDTD method. Optics Commun. 452, 360–365 (2019). https://doi.org/10.1016/j.optcom.2019.07.069

    Article  Google Scholar 

  37. Shrivastav, A.M., Cvelbar, U., Abdulhalim, I.: A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 4(1) (2021). https://doi.org/10.1038/s42003-020-01615-8

  38. Srivastava, T., Das, R., Jha, R.: Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide. Plasmonics 8(2), 515–521 (2012). https://doi.org/10.1007/s11468-012-9421-x

    Article  Google Scholar 

  39. Sullivan, D.M.: Exceeding the courant condition with the FDTD method. IEEE Microwave and Guided Wave Lett. 6(8), 289 (1996). https://doi.org/10.1109/75.508556

    Article  Google Scholar 

  40. Sun, Y., Fan, X.: Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399(1), 205–211 (2010). https://doi.org/10.1007/s00216-010-4237-z

    Article  MathSciNet  Google Scholar 

  41. Tavousi, A., Mansouri-Birjandi, M.A., Janfaza, M.: Graphene nanoribbon assisted refractometer based biosensor for mid-infrared label-free analysis. Plasmonics 14(5), 1207–1217 (2019). https://doi.org/10.1007/s11468-019-00909-w

    Article  Google Scholar 

  42. Wang, T.B., Wen, X.W., Yin, C.P., Wang, H.Z.: The transmission characteristics of surface plasmon polaritons in ring resonator. Opt. Express 17(26), 24096 (2009). https://doi.org/10.1364/oe.17.024096

    Article  Google Scholar 

  43. Wu, C., Ding, H., Huang, T., Wu, X., Chen, B., Ren, K., Fu, S.: Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13(1), 251–257 (2017). https://doi.org/10.1007/s11468-017-0506-4

    Article  Google Scholar 

  44. Wu, T., Liu, Y., Yu, Z., Ye, H., Peng, Y., Shu, C., Yang, C., Zhang, W., He, H.: A nanometeric temperature sensor based on plasmonic waveguide with an ethanol-sealed rectangular cavity. Optics Commun. 339, 1–6 (2015). https://doi.org/10.1016/j.optcom.2014.11.064

    Article  Google Scholar 

  45. Yang, X., Hua, E., Wang, M., Wang, Y., Wen, F., Yan, S.: Fano resonance in a MIM waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 19(22), 4972 (2019). https://doi.org/10.3390/s19224972

    Article  Google Scholar 

  46. Zafar, R., Nawaz, S., Singh, G., d’Alessandro, A., Salim, M.: Plasmonics-based refractive index sensor for detection of hemoglobin concentration. IEEE Sens. J. 18(11), 4372–4377 (2018). https://doi.org/10.1109/jsen.2018.2826040

    Article  Google Scholar 

  47. Zahra Madadi Kambiz Abedi, G.D., Khatir, M.: Dual-wavelength plasmonic perfect absorber suitable for refractive index sensing. Plasmonics 15(3), 703–708 (2019). https://doi.org/10.1007/s11468-019-01045-1

  48. Zhang, Z., Luo, L., Xue, C., Zhang, W., Yan, S.: Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors. Sensors 16(5), 642 (2016). https://doi.org/10.3390/s16050642

    Article  Google Scholar 

  49. Zhang, Z., Yang, J., He, X., Zhang, J., Huang, J., Chen, D., Han, Y.: Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18(2), 116 (2018). https://doi.org/10.3390/s18010116

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Algerian Ministry of Higher Education and Scientific Research via funding through the PRFU project No. A25N01UN280120180001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdesselam Hocini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hocini, A., Ben Salah, H. & Temmar, M.N.e. Ultra-high-sensitive sensor based on a metal–insulator–metal waveguide coupled with cross cavity. J Comput Electron 20, 1354–1362 (2021). https://doi.org/10.1007/s10825-021-01706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01706-7

Keywords

Navigation