Skip to main content
Log in

WKB-method for the 1D Schrödinger equation in the semi-classical limit: enhanced phase treatment

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the efficient numerical computation of solutions to the 1D stationary Schrödinger equation in the semiclassical limit in the highly oscillatory regime. A previous approach to this problem based on explicitly incorporating the leading terms of the WKB approximation is enhanced in two ways: first a refined error analysis for the method is presented for a not explicitly known WKB phase, and secondly the phase and its derivatives will be computed with spectral methods. The efficiency of the approach is illustrated for several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold, A., Ben Abdallah, N., Negulescu, C.: WKB-based schemes for the oscillatory 1D Schrödinger equation in the semi-classical limit. SIAM J. Numer. Anal. 49(4), 1436–1460 (2011)

    Article  MathSciNet  Google Scholar 

  2. Arnold, A., Döpfner, K.: Stationary Schrödinger equation in the semi-classical limit: WKB-based scheme coupled to a turning point. Calcolo 57, 3 (2020). https://doi.org/10.1007/s10092-019-0349-9

  3. Arnold, A., Negulescu, C.: Stationary Schrödinger equation in the semi-classical limit: numerical coupling of oscillatory and evanescent regions. Numer. Math. 138(2), 501–536 (2018)

    Article  MathSciNet  Google Scholar 

  4. Berrut, J.-P., Trefethen, L.N.: Barycentric Lagrange Interpolation. SIAM Review 46(3), 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chawla, M.M.: Error Estimates for the Clenshaw-Curtis Quadrature. Math. Comp. 22(103), 651–656 (1968)

    Article  MathSciNet  Google Scholar 

  6. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numerische Mathematik 2(1), 197–205 (1960)

    Article  MathSciNet  Google Scholar 

  7. Cohen, D., Hairer, E., Lubich, C.: Modulated Fourier Expansions of Highly Oscillatory Differential Equations. Found. Comput. Math. 3, 327–345 (2003)

    Article  MathSciNet  Google Scholar 

  8. Degond, P., Gallego, S., Méhats, F.: An asymptotic preserving scheme for the Schrödinger equation in the semiclassical limit. C.R. Acad. Sci. Paris, Ser. I 345(9), 531–536 (2007)

    Article  Google Scholar 

  9. E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review, Commun. Comput. Phys. 2(3), 367–450 (2007)

  10. Geier, J.: Efficient integrators for linear highly oscillatory ODEs based on asymptotic expansions, PhD-dissertation at TU Wien, (2011)

  11. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer-Verlag, Berlin Heidelberg (2006)

    MATH  Google Scholar 

  12. Handley, W.J., Lasenby, A.N., Hobson, M.P.: The Runge-Kutta-Wentzel-Kramers-Brillouin method, preprint, (2016). arXiv:1612.02288

  13. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. I. The \(h\)-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MathSciNet  Google Scholar 

  14. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. II. The \(h\)-\(p\) version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)

    Article  MathSciNet  Google Scholar 

  15. Iserles, A.: On the Global Error of Discretization Methods for Highly-Oscillatory Ordinary Differential Equations. BIT 42(3), 561–599 (2002)

    Article  MathSciNet  Google Scholar 

  16. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numerica 9, 215–365 (2000)

    Article  MathSciNet  Google Scholar 

  17. Iserles, A., Nørsett, S.P., Olver, S.: Highly oscillatory quadrature: The story so far. In: Bermudez de Castro, A. (ed.) Proceeding of ENuMath, Santiago de Compostella (2006), pp. 97–118. Springer Verlag, (2006)

  18. Jahnke, T.: Long-time-step integrators for almost-adiabatic quantum dynamics. SIAM J. Sci. Comp. 25, 2145–2164 (2004)

    Article  MathSciNet  Google Scholar 

  19. Jahnke, T., Lubich, C.: Numerical integrators for quantum dynamics close to the adiabatic limit. Numerische Mathematik 94, 289–314 (2003)

    Article  MathSciNet  Google Scholar 

  20. Landau, L.D., Lifschitz, E.M.: Quantenmechanik. Akademie-Verlag, Berlin (1985)

    Google Scholar 

  21. Lent, C.S., Kirkner, D.J.: The Quantum Transmitting Boundary Method. J. Appl. Phys. 67, 6353–6359 (1990)

    Article  Google Scholar 

  22. Lorenz, K., Jahnke, T., Lubich, C.: Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigendecomposition. BIT 45(1), 91–115 (2005)

    Article  MathSciNet  Google Scholar 

  23. Mennemann, J.-F., Jüngel, A., Kosina, H.: Transient Schrödinger-Poisson simulations of a high-frequency resonant tunneling diode oscillator. J. Computat. Phys. 239, 187–205 (2013)

    Article  Google Scholar 

  24. Moan, P.C., Niesen, J.: Convergence of the Magnus Series. Found. Comput. Math. 8, 291–301 (2008)

    Article  MathSciNet  Google Scholar 

  25. Negulescu, C.: Numerical analysis of a multiscale finite element scheme for the resolution of the stationary Schrödinger equation. Numerische Mathematik 108(4), 625–652 (2008)

    Article  MathSciNet  Google Scholar 

  26. Olver, S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Analy. 26, 213–227 (2006)

    Article  MathSciNet  Google Scholar 

  27. Sun, J.P., Haddad, G.I., Mazumder, P., Schulman, J.N.: Resonant Tunneling Diodes: Models and Properties. Proc. of the IEEE 86(4), 641–661 (1998)

    Article  Google Scholar 

  28. Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Klein.

Additional information

Communicated by Mechthild Thalhammer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author (AA) was supported by the FWF-doctoral school “Dissipation and dispersion in non-linear partial differential equations”, the bi-national FWF-project I3538-N32, and a sponsorship by Clear Sky Ventures. This work was supported by the ANR-FWF project ANuI. CK thanks for support by the isite BFC project NAANoD, the ANR-17-EURE-0002 EIPHI and by the European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie RISE 2017 Grant Agreement No. 778010 IPaDEGAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnold, A., Klein, C. & Ujvari, B. WKB-method for the 1D Schrödinger equation in the semi-classical limit: enhanced phase treatment. Bit Numer Math 62, 1–22 (2022). https://doi.org/10.1007/s10543-021-00868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00868-x

Keywords

Mathematics Subject Classification

Navigation