Skip to main content

Advertisement

Log in

Suspended-sediment Flux in the San Francisco Estuary; Part II: the Impact of the 2013–2016 California Drought and Controls on Sediment Flux

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Recent modeling has demonstrated that sediment supply is one of the primary environmental variables that will determine the sustainability of San Francisco Estuary tidal marshes over the next century as sea level rises. Therefore, understanding the environmental controls on sediment flux within the San Francisco Estuary is crucial for optimal planning and management of tidal marsh restoration. Herein, we present suspended-sediment flux estimates from water year (WY) 2009–2016 from the San Francisco Estuary to investigate the environmental controls and impact of the record 2013–2016 California drought. During the recent drought, sediment flux into Lower South Bay, the southernmost subembayment of the San Francisco Estuary, increased by 345% from 114 kt/year from WY 2009 to 2011 to 508 kt/year from WY 2014 to 2016, while local tributary sediment flux declined from 209 to 51 kt/year. Total annual sediment flux from WY 2009 to 2011 and 2014 to 2016 can be predicted by total annual freshwater inflow from the Sacramento-San Joaquin Delta (R2 = 0.83, p < 0.01), the primary source of freshwater input into the San Francisco Estuary. The volume of freshwater inflow from the Sacramento-San Joaquin Delta is hypothesized to affect shoal-to-channel density gradients that affect sediment flux from broad, typically more saline and turbid shoals, to the main tidal-channel seaward of Lower South Bay. During the drought, freshwater inflow from the Sacramento-San Joaquin Delta decreased, and replacement of typically more saline shoal water was reduced. As a result, landward-increasing cross-channel density gradients enhanced shoal-to-channel advective flux that increased sediment available for tidal dispersion and drove an increase in net-landward sediment flux into Lower South Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bearman, J.A., C.T. Friedrichs, B.E. Jaffe, and A.C. Foxgrover. 2010. Spatial trends in tidal flat shape and associated environmental parameters in South San Francisco Bay. Journal of Coastal Research 26 (2): 342–349.

    Article  Google Scholar 

  • Bever, A.J., M.L. MacWilliams, and D.K. Fullerton. 2018. Influence of an observed decadal decline in wind speed on turbidity in the San Francisco Estuary. Estuaries and Coasts 41 (7): 1943–1967.

    Article  Google Scholar 

  • Boesch, D., E. Burreson, W. Dennison, E. Houde, M. Kemp, V. Kennedy, R. Newell, K. Paynter, R.J. Orth, R. Ulanowicz, and C. Peterson. 2001. Factors in the decline of coastal ecosystems. Science 293 (5535) :1589–1591. https://doi.org/10.1126/science.293.5535.1589c.

  • Brand, A., J.R. Lacy, K. Hsu, D. Hoover, S. Gladding, and M.T. Stacey. 2010. Wind-enhanced resuspension in the shallow waters of South San Francisco Bay: Mechanisms and potential implications for cohesive sediment transport. Journal of Geophysical Research, Oceans 115 (C11). https://doi.org/10.1029/2010JC006172.

  • Buchanan, P.A., M.A. Downing-Kunz, D.H. Schoellhamer, and D.N. Livsey. 2018. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2014–15, U.S. Geological Survey Fact Sheet 2018-3013 https://doi.org/10.3133/fs20183013.

  • Caffrey, J.M. 1995. Spatial and seasonal patterns in sediment nitrogen remineralization and ammonium concentrations in San Francisco Bay, California. Estuaries 18 (1): 219–233.

    Article  CAS  Google Scholar 

  • California Department of Water Resources. 1986. DAYFLOW computer program documentation and data summary user’s guide. Sacramento, California. http://www.water.ca.gov/dayflow/documentation. Accessed 17 June 2020.

  • Cayan, D., A. Luers, G. Franco, M. Hanemann, and B. Croes. 2008. California at a crossroads: Climate change science informing policy. Climatic Change 87.

  • Chernetsky, A.S., H.M. Schuttelaars, and S.A. Talke. 2010. The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dynamics 60 (5): 1219–1241.

    Article  Google Scholar 

  • Conomos, T.J. 1979. Properties and circulation of San Francisco Bay waters.

  • Conomos, T.J., R.E. Smith, and J.W. Gartner. 1985. Environmental setting of San Francisco Bay. In Temporal dynamics of an estuary: San Francisco Bay, 1–12. Dordrecht: Springer.

    Book  Google Scholar 

  • Costanza, R., R. d'Arge, R. De Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O'neill, J. Paruelo, and R.G. Raskin. 1997. The value of the world’s ecosystem services and natural capital. Nature 387 (6630): 253–260.

    Article  CAS  Google Scholar 

  • Crauder, J., Downing-Kunz, M.A., Hobbs, J.A., Manning, A.J., Novick, E., Parchaseo, F., Wu, J., Schoellhamer, D.H., Senn, D.B., Shellenbarger, G.G., Thompson, J. and Yee, D. 2016. Lower South Bay Nutrient Synthesis. Richmond: San Francisco Estuary Institute & Aquatic Science Center.

  • D’Alpaos, A., S. Lanzoni, M. Marani, and A. Rinaldo. 2007. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research - Earth Surface 112 (F1).  https://doi.org/10.1029/2006JF000537.

  • Downing-Kunz, M.A., and D.H. Schoellhamer. 2013. Seasonal variations in suspended-sediment dynamics in the tidal reach of an estuarine tributary. Marine Geology 345: 314–326.

    Article  Google Scholar 

  • Dyer, K.R. 1974. The salt balance in stratified estuaries. Estuarine and Coastal Marine Science 2 (3): 273–281.

    Article  CAS  Google Scholar 

  • Dyer, K.R. 1998. Estuaries: A physical introduction. 2nd ed, 210. Chichester: Wiley.

    Google Scholar 

  • Edwards, T.K., G.D. Glysson, H.P. Guy, and V.W. Norman. 1999. Field methods for measurement of fluvial sediment, 89. Denver: US Geological Survey.

    Google Scholar 

  • Elias, E., J. Hansen, and L.H. Erikson. 2013. San Francisco Bay Basic Tide Model. https://doi.org/10.5066/F7DN4330

  • Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.R. Guntenspergen, S. Temmerman, A. D'Alpaos, J. Van De Koppel, J.M. Rybczyk, E. Reyes, C. Craft, and J. Clough. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics 50 (1). https://doi.org/10.1029/2011RG000359.

  • Flick, R.E., J.F. Murray, and L.C. Ewing. 2003. Trends in United States tidal datum statistics and tide range. Journal of Waterway, Port, Coastal, and Ocean Engineering 129 (4): 155–164.

    Article  Google Scholar 

  • Fregoso, T.A., R-F. T. Wang, E.S. Ateljevich, and B.E. Jaffe. 2017, A new seamless, high-resolution digital elevation model of the San Francisco Bay-Delta Estuary, California: U.S. Geological Survey Open-File Report 2017–1067, 27 p., https://doi.org/10.3133/ofr20171067.

  • Ganju, N.K., and D.H. Schoellhamer. 2006. Annual sediment flux estimates in a tidal strait using surrogate measurements. Estuarine, Coastal and Shelf Science 69 (1-2): 165–178.

    Article  Google Scholar 

  • Geyer, W.R., and P. MacCready. 2014. The estuarine circulation. Annual Review of Fluid Mechanics 46 (1): 175.

    Article  Google Scholar 

  • Geyer, W.R., and R.P. Signell. 1992. A reassessment of the role of tidal dispersion in estuaries and bays. Estuaries 15 (2): 97–108.

    Article  Google Scholar 

  • Gostic, M. 2018. Sediment Pathways in San Francisco South Bay. Masters Thesis; TU Delft.

  • Hager, S.W., and L.E. Schemel. 1996. Dissolved inorganic nitrogen, phosphorus, and silicon in South San Francisco Bay. I. Major factors affecting distributions. In San Francisco Bay: The Ecosystem, Pacific Division, ed. J.T. Hollibaugh, 189–215. San Francisco: American Association for the Advancement of Science.

    Google Scholar 

  • Helsel, D.R., and R.M. Hirsch. 2002. Statistical methods in water resources. Vol. 323. Reston: US Geological Survey.

    Google Scholar 

  • Hill, K., T. Dauphinee, and D. Woods. 1986. The extension of the Practical Salinity Scale 1978 to low salinities. IEEE Journal of Oceanic Engineering 11 (1): 109–112.

    Article  Google Scholar 

  • Huzzey, L.M., J.E. Cioern, and T.M. Powell. 1990. Episodic changes in lateral transport and phytoplankton distribution in South San Francisco Bay. Limnology and Oceanography 35 (2): 472–478.

    Article  Google Scholar 

  • Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, B.J. Bourque, R.H. Bradbury, R. Cooke, J. Erlandson, J.A. Estes, T.P. Hughes, S. Kidwell, C.B. Lange, H.S. Lenihan, J.M. Pandolfi, C.H. Peterson, R.S. Steneck, M.J. Tegner, and R.R. Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293 (5530): 629–638.

    Article  CAS  Google Scholar 

  • Jaffe, B. and A.C. Foxgrover. 2006. Sediment deposition and erosion in South San Francisco Bay, California from 1956 to 2005 (p. 20). US Geological Survey.

  • Kimmerer, W.J. 2002. Physical, biological, and management responses to variable freshwater flow into the San Francisco Estuary. Estuaries 25 (6): 1275–1290.

    Article  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6 (3): 253–260.

    Article  Google Scholar 

  • Knowles, N., and D.R. Cayan. 2002. Potential effects of global warming on the Sacramento/San Joaquin watershed and the San Francisco estuary. Geophysical Research Letters 29 (18): 38–31.

    Article  Google Scholar 

  • Lacy, J.R., D.H. Schoellhamer and J.R. Burau. 1996. Suspended-solids flux at a shallow-water site in South San Francisco Bay. In Proceedings of the North American water and environment congress.

  • Lacy, J.R., S. Gladding, A. Brand, A. Collignon, and M. Stacey. 2014. Lateral baroclinic forcing enhances sediment transport from shallows to channel in an estuary. Estuaries and Coasts 37 (5): 1058–1077.

    Article  CAS  Google Scholar 

  • Largier, J.L., J.T. Hollibaugh, and S.V. Smith. 1997. Seasonally hypersaline estuaries in Mediterranean-climate regions. Estuarine, Coastal and Shelf Science 45 (6): 789–797.

    Article  Google Scholar 

  • Lerczak, J.A., W.R. Geyer, and R.J. Chant. 2006. Mechanisms driving the time-dependent salt flux in a partially stratified estuary. Journal of Physical Oceanography 36 (12): 2296–2311.

    Article  Google Scholar 

  • Levesque, V.A. and K.A. Oberg. 2012. Computing discharge using the index velocity method (pp. 3-A23). US Department of the Interior, US Geological Survey.

  • Livsey, D.N., Downing-Kunz, M.A., Schoellhamer, D.H. and Manning, A.J., 2020. Suspended sediment flux in the San Francisco Estuary: Part I—Changes in the vertical distribution of suspended sediment and bias in estuarine sediment flux measurements. Estuaries and Coasts, pp. 1–17.

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312 (5781): 1806–1809.

    Article  CAS  Google Scholar 

  • Love, A.H., B.K. Esser, and J.R. Hunt. 2003. Reconstructing contaminant deposition in a San Francisco Bay marine, California. Journal of Environmental Engineering 129 (7): 659–666.

    Article  CAS  Google Scholar 

  • McCulloch, D.S., D.H. Peterson, P.R. Carlson and T.J. Conomos. 1970. A preliminary study of the effects of water circulation in the San Francisco Bay estuary: A. Some effects of fresh-water inflow on the flushing of south San Francisco Bay, B. Movement of seabed drifters in the San Francisco Bay estuary and the adjacent Pacific Ocean (No. 637-A, B). US Geological Survey.

  • McKee, L.J., M. Lewicki, D.H. Schoellhamer, and N.K. Ganju. 2013. Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California. Marine Geology 345: 47–62.

    Article  Google Scholar 

  • NOAA, National Geophysical Data Center. 2010: San Francisco Bay, California 1/3 arc-second NAVD 88 Coastal Digital Elevation Model. NOAA National Centers for Environmental Information. https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:741#. Accessed June, 17, 2020.

  • NOAA, National Ocean Servce. 1998. Medium Resolution Digital Vector Shoreline. https://shoreline.noaa.gov/data/datasheets/medres.html. Accessed 17 June 2020.

  • NOAA. 2019. Vertical datum transformation, VDatum 4.0.1, https://vdatum.noaa.gov/. Accessed June, 18, 2020.

  • Pond, S., and G.L. Pickard. 1983. Introductory dynamical oceanography. Oxford: Butterworth-Heinemann Ltd..

    Google Scholar 

  • Powell, T.M., J.E. Cloern, and L.M. Huzzey. 1989. Spatial and temporal variability in South San Francisco Bay (USA). I. Horizontal distributions of salinity, suspended sediments, and phytoplankton biomass and productivity. Estuarine, Coastal and Shelf Science 28 (6): 583–597.

    Article  CAS  Google Scholar 

  • Pubben, S.G.T. 2017. 3D Mixing patterns in San Francisco South Bay. Masters Thesis; TU Delft.

  • Robeson, S.M. 2015. Revisiting the recent California drought as an extreme value. Geophysical Research Letters 42 (16): 6771–6779.

    Article  Google Scholar 

  • Ruhl, C.A., and M.R. Simpson. 2005. Computation of discharge using the index-velocity method in tidally affected areas, 1–41. Denver: US Department of the Interior, US Geological Survey.

    Google Scholar 

  • Rustomji, P., and S.N. Wilkinson. 2008. Applying bootstrap resampling to quantify uncertainty in fluvial suspended sediment loads estimated using rating curves. Water Resources Research 44 (9). https://doi.org/10.1029/2007WR006088.

  • Schettini, C.A., A. Valle-Levinson, and E.C. Truccolo. 2017. Circulation and transport in short, low-inflow estuaries under anthropogenic stresses. Regional Studies in Marine Science 10: 52–64.

    Article  Google Scholar 

  • Schoellhamer, D.H. 1996. Factors affecting suspended-solids concentrations in south San Francisco Bay, California. Journal of Geophysical Research, Oceans 101 (C5): 12087–12095.

    Article  Google Scholar 

  • Schoellhamer, D.H. 2011. Sudden clearing of estuarine waters upon crossing the threshold from transport to supply regulation of sediment transport as an erodible sediment pool is depleted: San Francisco Bay, 1999. Estuaries and Coasts 34 (5): 885–899.

    Article  Google Scholar 

  • Schoellhamer, D.H., T.E. Mumley, and J.E. Leatherbarrow. 2007. Suspended sediment and sediment-associated contaminants in San Francisco Bay. Environmental Research 105 (1): 119–131.

    Article  CAS  Google Scholar 

  • Shellenbarger, G.G., and D.H. Schoellhamer. 2011. Continuous salinity and temperature data from San Francisco Estuary, 1982–2002: Trends and the salinity–freshwater inflow relationship. Journal of Coastal Research 27 (6): 1191–1201.

    Article  Google Scholar 

  • Shellenbarger, G.G., S.A. Wright, and D.H. Schoellhamer. 2013. A sediment budget for the southern reach in San Francisco Bay, CA: Implications for habitat restoration. Marine Geology 345: 281–293.

    Article  Google Scholar 

  • Stralberg, D., M. Brennan, J.C. Callaway, J.K. Wood, L.M. Schile, D. Jongsomjit, M. Kelly, V.T. Parker, and S. Crooks. 2011. Evaluating tidal marsh sustainability in the face of sea-level rise: A hybrid modeling approach applied to San Francisco Bay. PLoS One 6 (11). https://doi.org/10.1371/journal.pone.0027388.

  • Swanson, K.M., J.Z. Drexler, D.H. Schoellhamer, K.M. Thorne, M.L. Casazza, C.T. Overton, J.C. Callaway, and J.Y. Takekawa. 2014. 2014. Wetland accretion rate model of ecosystem resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary. Estuaries and Coasts, 37(2), pp.476-492. Species in the San Francisco Estuary. Estuaries and Coasts 37 (2): 476–492.

    Article  Google Scholar 

  • U.S. Geological Survey, 2020. National Water Information System: U.S. Geological Survey web interface. https://doi.org/10.5066/F7P55KJN. Accessed 17 June 2020.

  • van Kempen, O. 2017. Sediment pathways in San Francisco South Bay. Masters Thesis; TU Delf.t

  • Walters, R.A., R.T. Cheng, and T.J. Conomos. 1985. Time scales of circulation and mixing processes of San Francisco Bay waters. In Temporal dynamics of an estuary: San Francisco Bay, 13–36. Dordrecht: Springer.

    Book  Google Scholar 

  • Work, P.A., M.A. Downing-Kunz, and D. Livsey. 2017. Record-high specific conductance and water temperature in San Francisco Bay during water year 2015: U.S. Geological Survey Open-File Report 2017–1022, 4 p. https://doi.org/10.3133/ofr20171022.

Download references

Acknowledgments

The authors wish to thank the associate editor and two anonymous reviewers whose input improved the readability and content of this manuscript. The authors wish to thank Darin Einhell, Kurt Weidich, Paul Buchanan, Gwen Davies, David Hart, and Selina Davila-Olivera for assistance with data collection.

Funding

The Regional Monitoring Program for Water Quality in San Francisco Bay and a San Francisco Bay Water Board enforcement action provided funding for data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Livsey.

Additional information

Communicated by Neil Kamal Ganju

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livsey, D.N., Downing-Kunz, M.A., Schoellhamer, D.H. et al. Suspended-sediment Flux in the San Francisco Estuary; Part II: the Impact of the 2013–2016 California Drought and Controls on Sediment Flux. Estuaries and Coasts 44, 972–990 (2021). https://doi.org/10.1007/s12237-020-00840-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00840-y

Keywords

Navigation