Skip to main content
Log in

Compositional Scalar-on-Function Regression with Application to Sediment Particle Size Distributions

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

The chemical composition of sediments is controlled predominantly by the sediment grain size, and thus evaluating their relationship is an important task in sedimentary geochemistry. The grain size is characterized by the respective particle size distribution, which can be expressed as a probability density function. Because of the relative character of densities, the Bayes space methodology was employed to build a regression model between a real response and a density function as a covariate, here the chemical composition and the particle size density. For practical computations, density functions were expressed in the standard \(L^2\) space using the centred logratio transformation and spline approximation of the input discretized densities was utilized by respecting the induced zero-integral constraint. After a concise simulation study, supporting the relevance of the proposed regression model, the new methodology was applied to examine the relationship between sediment grain size and geochemical composition, with samples being obtained in the Czech Republic in the Skalka Reservoir and in the Ohře River floodplain upstream of the reservoir, to reveal proper grain size proxies. The Al/Si and Zr/Rb logratios in the sediments that were studied showed grain-size control, which makes them suitable for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Data are available from the authors on request.

References

  • Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London

    Book  Google Scholar 

  • Bloemsma M, Zabel M, Stuut J, Tjallingii R, Collins JA, Weltje GJ (2012) Modelling the joint variability of grain size and chemical composition in sediments. Sed Geol 280:135–148

    Article  Google Scholar 

  • Bouchez J, Gaillardet J, France-Lanord C, Bourgoin L, Maia P (2011) Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles. Geochem Geophys Geosyst 12:Q03008

    Article  Google Scholar 

  • Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34:2159–2179

    Google Scholar 

  • Capezza C, Lepore A, Menafoglio A, Palumbo B, Vantini S (2020) Control charts for monitoring ship operating conditions and \(\text{CO}_2\) emissions based on scalar-on-function regression. Appl Stoch Models Bus Ind 36(3):477–500

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45:11–22

    Article  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (2003a) Spline estimators for the functional linear model. Stat Sin 13:571–591

    Google Scholar 

  • Cardot H, Ferraty F, Sarda P, Toulouse R (2003b) Spline estimators for the functional linear model. Stat Sin 13:571–591

    Google Scholar 

  • Chen J, Chen Y, Liu L, Ji J, Balsam W, Sun Y, Lu H (2006) Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochimica et Cosmochimica Acta 70:1471–1482

  • De Boor C (1978) A practical guide to splines. Springer, New York

    Book  Google Scholar 

  • Dierckx P (1995) Curve and surface fitting with splines. Oxford University Press, Oxford

    Google Scholar 

  • Egozcue JJ, Díaz-Barrero JL, Pawlowsky-Glahn V (2006) Hilbert space of probability density functions based on Aitchison geometry. Acta Math Sin 22(4):1175–1182

    Article  Google Scholar 

  • Febrero-Bande M, Galeano P, González-Manteiga W (2010) Measures of influence for the functional linear model with scalar response. J Multivar Anal 101(2):327–339

    Article  Google Scholar 

  • Filzmoser P, Hron K, Templ M (2018) Applied compositional data analysis. Springer, Cham

    Book  Google Scholar 

  • Fišerová E, Donevska S, Hron K, Bábek O, Vaňkátová K (2016) Element enrichment factor calculation using grain-size distribution and functional data regression. Meas Sci Rev 16(5):235–243

    Article  Google Scholar 

  • Flood R, Bloemsma M, Weltje G, Barr I, O’Rourke S, Turner J, Orford J (2016) Compositional data analysis of holocene sediments from the West Bengal Sundarbans, India: geochemical proxies for grain-size variability in a delta environment. Appl Geochem 75:222–235

    Article  Google Scholar 

  • Gärtner A, Linnemann U, Sagawe A, Hofmann M, Ullrich B, Kleber A (2013) Morphology of zircon crystal grains in sediments—characteristics, classifications, definitions. Geol Saxonica 59:65–73

    Google Scholar 

  • Hošek M, Bednárek J, Popelka J, Elznicová J, T\(\mathring{\rm u}\)mová Š, Rohovec J, Navrátil T, Matys Grygar T (2020) Persistent mercury hot spot in Central Europe and Skalka Dam Reservoir as a long-term mercury trap. Environ Geochem Health 42:1273–1290

  • Hron K, Menafoglio A, Templ M, Hr\(\mathring{\rm u}\)zová K, Filzmoser P (2016) Simplicial principal component analysis for density functions in Bayes spaces. Comput Stat Data Anal 94:330–350

  • Liu D, Bertrand S, Weltje G (2019) An empirical method to predict sediment grain size from inorganic geochemical measurements. Geochem Geophys Geosyst 20:3690–3704

    Article  Google Scholar 

  • Machalová J, Hron K, Monti GS (2016) Preprocessing of centred logratio transformed density functions using smoothing splines. J Appl Stat 43(8):1419–1435

    Article  Google Scholar 

  • Machalová J, Talská R, Hron K, Gába A (2021) Compositional splines for representation of density functions. Comput Stat. https://doi.org/10.1007/s00180-020-01042-7

    Article  Google Scholar 

  • Matys Grygar T, Popelka J (2016) Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J Geochem Explor 170:39–57

    Article  Google Scholar 

  • Matys Grygar T, Elznicová J, Kiss T, Smith H (2016) Using sedimentary archives to reconstruct pollution history and sediment provenance: the Ohře River, Czech Republic. Catena 144:109–129

    Article  Google Scholar 

  • Matys Grygar T, Hošek M, Pacina J, Štojdl J, Bábek O, Sedláček J, Hron K, Talská R, Kříženecká S, Tolaszová J (2018) Changes in the geochemistry of fluvial sediments after dam construction (the Chrudimka River, the Czech Republic). Appl Geochem 98:94–108

    Article  Google Scholar 

  • Matys Grygar T, Mach K, Martinez M (2019) Checklist for the use of potassium concentrations in siliciclastic sediments as paleoenvironmental archives. Sed Geol 382:75–84

    Article  Google Scholar 

  • Menafoglio A, Guadagnini A, Secchi P (2014) A kriging approach based on Aitchison geometry for the characterization of particle-size curves in heterogeneous aquifers. Stoch Env Res Risk Assess 28(7):1835–1851

    Article  Google Scholar 

  • Menafoglio A, Guadagnini A, Secchi P (2016a) Stochastic simulation of soil particle-size curves in heterogeneous aquifer systems through a Bayes space approach. Water Resour Res 52(8):5708–5726

    Article  Google Scholar 

  • Menafoglio A, Secchi P, Guadagnini A (2016b) A class-kriging predictor for functional compositions with application to particle-size curves in heterogeneous aquifers. Math Geosci 48(4):463–485

    Article  Google Scholar 

  • Menafoglio A, Grasso M, Secchi P, Colosimo B (2018) Profile monitoring of probability density functions via simplicial functional PCA with application to image data. Technometrics 60(4):497–510

    Article  Google Scholar 

  • Morris J (2015) Functional regression. Annu Rev Stat Appl 2:321–359

    Article  Google Scholar 

  • Ordóñez C, Sierra C, Albuquerque T, Gallego J (2013) Functional data analysis as a tool to correlate textural and geochemical data. Appl Math Comput 223:476–482

    Google Scholar 

  • Pacina J, Lendáková Z, Štojdl J, Matys Grygar T, Dolejš M (2020) Dynamics of sediments in reservoir inflows: a case study of the Skalka and Nechranice reservoirs, Czech Republic. ISPRS Int J Geo-Inf 9:258

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modeling and analysis of compositional data. Wiley, Chichester

    Google Scholar 

  • Ramsay J, Silverman B (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Reiss P, Goldsmith J, Shang H, Ogden R (2018) Methods for scalar-on-function regression. Int Stat Rev 85(2):228–249

    Article  Google Scholar 

  • Sierra C, Ordóñez C, Saavedra A, Gallego J (2015) Element enrichment factor calculation using grain-size distribution and functional data regression. Chemosphere 119:1192–1199

    Article  Google Scholar 

  • Talská R, Menafoglio A, Machalová J, Hron K, Fišerová E (2018) Compositional regression with functional response. Comput Stat Data Anal 123:66–85

    Article  Google Scholar 

  • Talská R, Menafoglio A, Hron K, Egozcue JJ, Palarea-Albaladejo J (2020) Weighting the domain of probability densities in functional data analysis. Stat 9(1):e283

  • Tekbudak M, Alfaro-Cordoba M, Maity A, Staicu A (2019) A comparison of testing methods in scalar-on-function regression. ASTA Adv Stat Anal 103(3):411–436

    Article  Google Scholar 

  • Tekwe C, Zoh R, Yang M, Carroll R, Honvoh G, Allison D, Benden M, Xue L (2019) Instrumental variable approach to estimating the scalar-on-function regression model with measurement error with application to energy expenditure assessment in childhood obesity. Stat Med 38(20):3764–3781

    Article  Google Scholar 

  • Tolosana-Delgado R, von Eynatten H (2009) Grain-size control on petrographic composition of sediments: compositional regression and rounded zeroes. Math Geosci 41(8):869–886

    Article  Google Scholar 

  • Tolosana-Delgado R, von Eynatten H (2010) Simplifying compositional multiple regression: application to grain size controls on sediment geochemistry. Comput Geosci 36:577–589

    Article  Google Scholar 

  • van den Boogaart KG, Egozcue JJ, Pawlowsky-Glahn V (2014) Bayes Hilbert spaces. Austr N Z J Stat 56(2):171–194

    Article  Google Scholar 

  • van den Boogaart K, Filzmoser P, Hron K, Templ M, Tolosana-Delgado R (2021) Classical and robust regression analysis with compositional data. Math Geosci. https://doi.org/10.1007/s11004-020-09895-w

    Article  Google Scholar 

  • von Eynatten H, Tolosana-Delgado R, Karius V (2012) Sediment generation in modern glacial settings: grain-size and source-rock control on sediment composition. Sed Geol 280:80–92

    Article  Google Scholar 

  • von Eynatten H, Tolosana-Delgado R, Karius V, Bachmann K, Caracciolo L (2016) Sediment generation in humid Mediterranean setting: grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria). Sed Geol 336:68–80

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Czech Science Foundation GA19-01768S.

Author information

Authors and Affiliations

Authors

Contributions

RT and KH conceived this research and designed the experiments; TMG provided the geochemical dataset and interpretations; RT performed the experiments and analysis; RT wrote the first draft of the paper and RT, KH and TMG all participated in the revisions of it. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Renáta Talská.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix: Computation of ZB-Spline Coefficients

Appendix: Computation of ZB-Spline Coefficients

In this appendix, the computation of ZB-spline coefficients for a smoothing spline from the \(L_0^2\) space is briefly recalled; for more details see Machalová et al. (2021). Let data \((t_{j},f_{j})\), \(a\le t_{j}\le b\), weights \(w_{j}>0\), \(j=1,\ldots ,n\), \(n\ge g+1\) and a parameter \(\alpha \in (0,1)\) be given. The task is to find a spline \(s_{k}(t)\in {{{\mathscr {Z}}}}_{k}^{\varDelta \lambda }[a,b]\subset L_0^2(I)\), which minimizes the functional

$$\begin{aligned} J_{l}(s_k) = (1-\alpha )\int _{a}^{b}\left[ s_{k}^{(2)}(t)\right] ^{2}\,\mathrm{d}t + \alpha \sum \limits _{j=1}^{n} w_{j}\left[ f_{j}-s_{k}(t_{j})\right] ^{2}. \end{aligned}$$
(64)

As proved in Machalová et al. (2021), the resulting smoothing spline is given by the formula

$$\begin{aligned} s_{k}(t) = \sum \limits _{j=-k}^{g-1}z_{j}^{*}Z_{j}^{k+1}(t), \end{aligned}$$

where \(Z_{j}^{k+1} \in L_0^2, j=-k,\ldots ,g-1\) are ZB-spline basis functions defined in (33), and the vector \({\mathbf {z}}^{*}=\left( z_{-k}^{*},\ldots ,z_{g-1}^{*}\right) ^{'}\) is obtained by

$$\begin{aligned} \mathbf{z}^{*}=\left\{ \mathbf{K}^{'} \mathbf{D }\left[ (1-\alpha ){\mathbf{S}_2}^{'}{} \mathbf{M}^{(2)}_{B}{} \mathbf{S}_2+\alpha \mathbf{B}_{k+1}^{'}(\mathbf{t})\mathbf{W}{} \mathbf{B}_{k+1}(\mathbf{t})\right] \mathbf{DK}\right\} ^{-1} \alpha \mathbf{K}^{'}{} \mathbf{D}{} \mathbf{B}_{k+1}^{'}(\mathbf{t})\mathbf{W f}. \end{aligned}$$
(65)

Here, \(\mathbf{W} = \hbox {diag}(\mathbf{w }), \mathbf{w }=(w_1,\ldots ,w_n)', \mathbf{f }=(f_1,\ldots ,f_n)'\),

$$\begin{aligned} \mathbf{B}_{k+1}(\mathbf{t}) = \left( \begin{matrix} B^{k+1}_{-k}({t_1}) &{} \ldots &{} B^{k+1}_{g}({t_1}) \\ \vdots &{} \ddots &{} \vdots \\ B^{k+1}_{-k}({t_n}) &{} \ldots &{} B^{k+1}_{-g}({t_n}) \end{matrix}\right) \in {\mathbb {R}}^{n,g+k+1}, \end{aligned}$$

is the collocation matrix, \(\mathbf{D }, \mathbf{L }, \mathbf{M}^{(2)}_{B}\) are given in (36), (37), (47), and \(\mathbf{S }_2 = \mathbf{D }_2 \mathbf{L }_2 \mathbf{D }_1 \mathbf{L }_1 \in {\mathbb {R}}^{g+k+1-2,g+k+1}\) with \(\mathbf{D }_j\), \(\mathbf{L }_j\), \(j=1,2\) are given in (48), (49).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talská, R., Hron, K. & Grygar, T.M. Compositional Scalar-on-Function Regression with Application to Sediment Particle Size Distributions. Math Geosci 53, 1667–1695 (2021). https://doi.org/10.1007/s11004-021-09941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-021-09941-1

Keywords

Navigation