Skip to main content
Log in

Effect of Compatibilizers on the Structure and Dynamics at Polymer Blend Interfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We use coarse grained Molecular Dynamics simulations to determine the effect of diblock copolymers and inorganic sheet like compatibilizers at polymer blend interfaces. Previous studies have shown that the interfacial region is prone to slip if an external shear force is applied to the polymer blend. While a number of theoretical and computational studies have examined the effect of copolymer compatibilizers, the effect of adding sheet-like compatilibilizers (for e.g. nanoclay) has not been investigated computationally. Thus, while experiments have shown that sheet-like filler are effective, the exact mechanisms are unknown. Our results indicate that sheet like fillers that have equal affinity to either polymer in a binary blend can produce a larger reduction of interfacial tension when compared to diblock copolymers at equal volume fractions. However, the localization of sheet fillers at the interface can be a possible limiting factor. We also show that sheet fillers reduce slip, thus providing for improved stress transfer across the interface, leading to a stronger blend.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Avaliability

Data has been archived and will be made available on request.

Code Availability

LAMMPS is an open source software that is available for free download.

References

  1. Paul, D.R.: Polymer Blends, vol. 1. Academic Press Inc, London (1978)

    Google Scholar 

  2. Gan, Z., Yu, D., Zhong, Z., Liang, Q., Jing, X.: Enzymatic degradation of poly(ε-caprolactone)/poly(dl-lactide) blends in phosphate buffer solution. Polymer 40(10), 2859–2862 (1999). https://doi.org/10.1016/S0032-3861(98)00549-7

    Article  CAS  Google Scholar 

  3. Gazotti, W.A., Jr., Casalbore-Miceli, G., Mitzakoff, S., Geri, A., Gallazzi, M.C., De Paoli, M.A.: Conductive polymer blends as electrochromic materials. Electrochim. Acta 44(12), 1965–1971 (1999). https://doi.org/10.1016/S0013-4686(98)00305-3

    Article  CAS  Google Scholar 

  4. Mano, J.F., Koniarova, D., Reis, R.L.: Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. J. Mater. Sci. Mater. Med. 14(2), 127–135 (2003). https://doi.org/10.1023/A:1022015712170

    Article  CAS  Google Scholar 

  5. Wu, S.: Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer 26(12), 1855–1863 (1985). https://doi.org/10.1016/0032-3861(85)90015-1

    Article  CAS  Google Scholar 

  6. Song, J., Baker, A.M., Macosko, C.W., Ewoldt, R.H.: Reactive coupling between immiscible polymer chains: acceleration by compressive flow. AIChE J. 59(9), 3391–3402 (2013). https://doi.org/10.1002/aic.14092

    Article  CAS  Google Scholar 

  7. Lizymol, P.P., Thomas, S.: Thermal behaviour of polymer blends: a comparison of the thermal properties of miscible and immiscible systems. Polym. Degrad. Stab. 41(1), 59–64 (1993). https://doi.org/10.1016/0141-3910(93)90061-M

    Article  CAS  Google Scholar 

  8. Porter, R.S., Wang, L.-H.: Compatibility and transesterification in binary polymer blends. Polymer 33(10), 2019–2030 (1992). https://doi.org/10.1016/0032-3861(92)90866-U

    Article  CAS  Google Scholar 

  9. Lyatskaya, Y., Gersappe, D., Balazs, A.C.: Effect of copolymer architecture on the efficiency of compatibilizers. Macromolecules 28(18), 6278–6283 (1995). https://doi.org/10.1021/ma00122a040

    Article  CAS  Google Scholar 

  10. Lyatskaya, Y., Gersappe, D., Gross, N.A., Balazs, A.C.: Designing compatibilizers to reduce interfacial tension in polymer blends. J. Phys. Chem. 100(5), 1449–1458 (1996). https://doi.org/10.1021/jp952422e

    Article  CAS  Google Scholar 

  11. Barsky, S., Robbins, M.O.: Bulk and interfacial shear thinning of immiscible polymers. Phys. Rev. E 65(2), 021808 (2002). https://doi.org/10.1103/PhysRevE.65.021808

    Article  CAS  Google Scholar 

  12. Ge, T., Grest, G.S., Robbins, M.O.: Structure and strength at immiscible polymer interfaces. ACS Macro Lett. 2(10), 882–886 (2013). https://doi.org/10.1021/mz400407m

    Article  CAS  Google Scholar 

  13. Ge, T., Grest, G.S., Robbins, M.O.: Tensile fracture of welded polymer interfaces: miscibility, entanglements, and crazing. Macromolecules 47(19), 6982–6989 (2014). https://doi.org/10.1021/ma501473q

    Article  CAS  Google Scholar 

  14. Ge, T., Pierce, F., Perahia, D., Grest, G.S., Robbins, M.O.: Molecular dynamics simulations of polymer welding: strength from interfacial entanglements. Phys. Rev. Lett. 110(9), 098301 (2013). https://doi.org/10.1103/PhysRevLett.110.098301

    Article  CAS  Google Scholar 

  15. Xanthos, M.: Interfacial agents for multiphase polymer systems: Recent advances. Polym. Eng. Sci. 28(21), 1392–1400 (1988). https://doi.org/10.1002/pen.760282108

    Article  CAS  Google Scholar 

  16. Elias, L., Fenouillot, F., Majesté, J.C., Alcouffe, P., Cassagnau, P.: Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 49(20), 4378–4385 (2008). https://doi.org/10.1016/j.polymer.2008.07.018

    Article  CAS  Google Scholar 

  17. Chen, C.C., White, J.L.: Compatibilizing agents in polymer blends: interfacial tension, phase morphology, and mechanical properties. Polym. Eng. Sci. 33(14), 923–930 (1993). https://doi.org/10.1002/pen.760331409

    Article  CAS  Google Scholar 

  18. Fenouillot, F., Cassagnau, P., Majesté, J.C.: Uneven distribution of nanoparticles in immiscible fluids: morphology development in polymer blends. Polymer 50(6), 1333–1350 (2009). https://doi.org/10.1016/j.polymer.2008.12.029

    Article  CAS  Google Scholar 

  19. Yousfi, M., Soulestin, J., Vergnes, B., Lacrampe, M.-F., Krawczak, P.: Compatibilization of immiscible polymer blends by organoclay: effect of nanofiller or organo-modifier? Macromol. Mater. Eng 298(7), 757–770 (2013). https://doi.org/10.1002/mame.201200138

    Article  CAS  Google Scholar 

  20. Si, M., Araki, T., Ade, H., Kilcoyne, A.L.D., Fisher, R., Sokolov, J.C., Rafailovich, M.H.: Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39(14), 4793–4801 (2006). https://doi.org/10.1021/ma060125+

    Article  CAS  Google Scholar 

  21. Sinha Ray, S., Bousmina, M.: Effect of organic modification on the compatibilization efficiency of clay in an immiscible polymer blend. Macromol. Rapid Commun. 26(20), 1639–1646 (2005). https://doi.org/10.1002/marc.200500447

    Article  CAS  Google Scholar 

  22. Guo, Y., He, S., Yang, K., Xue, Y., Zuo, X., Yu, Y., Liu, Y., Chang, C.-C., Rafailovich, M.H.: Enhancing the mechanical properties of biodegradable polymer blends using tubular nanoparticle stitching of the interfaces. ACS Appl. Mater. Interfaces. 8(27), 17565–17573 (2016). https://doi.org/10.1021/acsami.6b05698

    Article  CAS  Google Scholar 

  23. Cao, Y., Zhang, J., Feng, J., Wu, P.: Compatibilization of immiscible polymer blends using graphene oxide sheets. ACS Nano 5(7), 5920–5927 (2011). https://doi.org/10.1021/nn201717a

    Article  CAS  Google Scholar 

  24. Goveas, J.L., Fredrickson, G.H.: Apparent slip at a polymer-polymer interface. Eur. Phys. Journal B 2(1), 79–92 (1998). https://doi.org/10.1007/s100510050228

    Article  CAS  Google Scholar 

  25. Lam, Y.C., Jiang, L., Yue, C.Y., Tam, K.C., Li, L., Hu, X.: Interfacial slip between polymer melts studied by confocal microscopy and rheological measurements. J. Rheol. 47(3), 795–807 (2003). https://doi.org/10.1122/1.1566035

    Article  CAS  Google Scholar 

  26. Brochard, F., De Gennes, P.G.: Shear-dependent slippage at a polymer/solid interface. Langmuir 8(12), 3033–3037 (1992). https://doi.org/10.1021/la00048a030

    Article  CAS  Google Scholar 

  27. Adhikari, N.P., Goveas, J.L.: Effects of slip on the viscosity of polymer melts. J. Polym. Sci. B 42(10), 1888–1904 (2004). https://doi.org/10.1002/polb.20066

    Article  CAS  Google Scholar 

  28. Zhao, R., Macosko, C.W.: Slip at polymer–polymer interfaces: rheological measurements on coextruded multilayers. J. Rheol. 46(1), 145–167 (2002). https://doi.org/10.1122/1.1427912

    Article  CAS  Google Scholar 

  29. Zhang, W., Lin, M., Winesett, A., Dhez, O., Kilcoyne, A.L., Ade, H., Rubinstein, M., Shafi, K.V.P.M., Ulman, A., Gersappe, D., Tenne, R., Rafailovich, M., Sokolov, J., Frisch, H.L.: The use of functionalized nanoparticles as non-specific compatibilizers for polymer blends. Polym. Adv. Technol. 22(1), 65–71 (2011). https://doi.org/10.1002/pat.1875

    Article  CAS  Google Scholar 

  30. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  31. Barsky, S., Robbins, M.O.: Molecular dynamics study of slip at the interface between immiscible polymers. Phys. Rev. E 63(2), 021801 (2001). https://doi.org/10.1103/PhysRevE.63.021801

    Article  CAS  Google Scholar 

  32. Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92(8), 5057–5086 (1990). https://doi.org/10.1063/1.458541

    Article  CAS  Google Scholar 

  33. Kremer, K., Grest, G.S., Carmesin, I.: Crossover from rouse to reptation dynamics: a molecular-dynamics simulation. Phys. Rev. Lett. 61(5), 566–569 (1988). https://doi.org/10.1103/PhysRevLett.61.566

    Article  CAS  Google Scholar 

  34. Chremos, A., Nikoubashman, A., Panagiotopoulos, A.Z.: Flory-Huggins parameter χ, from binary mixtures of Lennard–Jones particles to block copolymer melts. J. Chem. Phys. 140(5), 054909 (2014). https://doi.org/10.1063/1.4863331

    Article  CAS  Google Scholar 

  35. Xu, D., Bhatnagar, D., Gersappe, D., Sokolov, J.C., Rafailovich, M.H., Lombardi, J.: Rheology of poly(N-isopropylacrylamide)–clay nanocomposite hydrogels. Macromolecules 48(3), 840–846 (2015). https://doi.org/10.1021/ma502111p

    Article  CAS  Google Scholar 

  36. Xu, D., Gersappe, D.: Structure formation in nanocomposite hydrogels. Soft Matter 13(9), 1853–1861 (2017). https://doi.org/10.1039/C6SM02543A

    Article  CAS  Google Scholar 

  37. Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967). https://doi.org/10.1103/PhysRev.159.98

    Article  CAS  Google Scholar 

  38. Jaber, E., Luo, H., Li, W., Gersappe, D.: Network formation in polymer nanocomposites under shear. Soft Matter 7(8), 3852–3860 (2011). https://doi.org/10.1039/C0SM00990C

    Article  CAS  Google Scholar 

  39. Lobe, V.M., White, J.L.: An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt. Polym. Eng. Sci. 19(9), 617–624 (1979). https://doi.org/10.1002/pen.760190905

    Article  CAS  Google Scholar 

  40. Helfand, E., Tagami, Y.: Theory of the interface between immiscible polymers. J. Chem. Phys. 57(4), 1812–1813 (1972). https://doi.org/10.1063/1.1678491

    Article  Google Scholar 

  41. Gersappe, D., Robbins, M.O.: Where do polymer adhesives fail? Europhys. Lett. 48(2), 150–155 (1999). https://doi.org/10.1209/epl/i1999-00459-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof Miriam Rafailovich and Prof Sherif Abdelaziz for useful discussions. This research was sponsored by the US Army Engineer Research and Development Center (ERDC) and was accomplished under Cooperative Agreement Number W912HZ2020054. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office, ERDC or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Funding

This research was sponsored by the US Army Engineer Research and Development Center (ERDC) and was accomplished under Cooperative Agreement Number W912HZ2020054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Gersappe.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Xu, D. & Gersappe, D. Effect of Compatibilizers on the Structure and Dynamics at Polymer Blend Interfaces. Tribol Lett 69, 61 (2021). https://doi.org/10.1007/s11249-021-01435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01435-9

Navigation