Skip to main content
Log in

Quantifying Decoherence of Gaussian Noise Channels

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Gaussian noise channels (also called classical noise channels, bosonic Gaussian channels) arise naturally in continuous variable quantum information and play an important role in both theoretical analysis and experimental investigation of information transmission. After reviewing concisely the basic properties of these channels, we introduce an information-theoretic measure for the decoherence of optical states caused by these channels in terms of averaged Wigner-Yanase skew information, explore its basic features, obtain a scaling law, and derive a complementarity relation between the decoherence and the quantum affinity. As an application of the decoherence measure, we derive a convenient and sufficient criterion for detecting optical nonclassicality. The decoherence on some typical optical states caused by Gaussian noise channels are explicitly evaluated to illustrate the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blahut, R.E.: Principles and Practice of Information Theory. Addison-Wesley, New York (1987)

    MATH  Google Scholar 

  2. Caves, C.M., Drummond, P.D.: Quantum limits on bosonic communication rates. Rev. Mod. Phys. 66(2), 481–537 (1994)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inform. Th. 44(6), 2724–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Holevo, A.S.: Quantum coding theorems. Russ. Math. Surv. 53(6), 1295–1331 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  6. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715–775 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76(4), 1267–1305 (2005)

    Article  ADS  Google Scholar 

  8. Åberg, J.: Quantifying superposition. arXiv: quant-ph/0612146 (2006)

  9. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16(3), 033007 (2014)

    Article  ADS  MATH  Google Scholar 

  10. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  11. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113(17), 170401 (2014)

    Article  ADS  Google Scholar 

  12. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5(2), 021001 (2015)

    Google Scholar 

  14. Pires, D.P., Céleri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91(4), 042330 (2015)

    Article  ADS  Google Scholar 

  15. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92(2), 022112 (2015)

    Article  ADS  Google Scholar 

  16. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92(6), 012118 (2015)

    Article  ADS  Google Scholar 

  17. Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116(16), 160406 (2016)

    Article  ADS  Google Scholar 

  18. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116(15), 150502 (2016)

    Article  ADS  Google Scholar 

  19. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93(1), 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(12), 120404 (2016)

    Article  ADS  Google Scholar 

  21. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116(16), 160407 (2016)

    Article  ADS  Google Scholar 

  22. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117(3), 030401 (2016)

    Article  ADS  Google Scholar 

  23. Chang, L., Luo, S., Sun, Y.: Superposition quantification. Commun. Theor. Phys. 68(5), 565–570 (2017)

    Article  ADS  MATH  Google Scholar 

  24. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A 98(1), 012113 (2018)

    Article  ADS  Google Scholar 

  26. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79(2), 555–609 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gour, G., Spekkens, R.W.: The resource theory of quantum reference frames: manipulations and monotones. New J. Phys. 10(3), 033023 (2008)

    Article  ADS  Google Scholar 

  28. Gour, G., Marvian, I., Spekkens, R.W.I.: Measuring the quality of a quantum reference frame: The relative entropy of frameness. Phys. Rev. A 80(1), 012307 (2009)

    Article  ADS  Google Scholar 

  29. Marvian, I., Spekkens, R.W.: The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations. New J. Phys. 15(3), 033001 (2013)

    Article  ADS  MATH  Google Scholar 

  30. Marvian, I., Spekkens, R.W.: Extending Noether’s theorem by quantifying the asymmetry of quantum states. Nat. Commun. 5(1), 3821 (2014)

    Article  ADS  Google Scholar 

  31. Marvian, I., Spekkens, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94(5), 052324 (2016)

    Article  ADS  Google Scholar 

  32. Fang, Y.N., Dong, G.H., Zhou, D.L., Sun, C.P.: Quantification of symmetry. Commun. Theor. Phys. 65(4), 423–433 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Li, N., Luo, S., Sun, Y.: From asymmetry to correlations. EuroPhys. Lett. 130(3), 30004 (2020)

    Article  ADS  Google Scholar 

  34. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lachs, G.: Theoretical aspects of mixtures of thermal and coherent radiation. Phys. Rev. 138(4B), B1012–B1016 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Vourdas, A.: Superposition of squeezed coherent states with thermal light. Phys. Rev. A 34(4), 3466–3469 (1986)

    Article  ADS  Google Scholar 

  37. Vourdas, A., Weiner, R.M.: Photon-counting distribution in squeezed states. Phys. Rev. A 36(12), 5866–5869 (1987)

    Article  ADS  Google Scholar 

  38. Vourdas, A.: Superposition of number eigenstates with thermal light. Phys. Rev. A 37(10), 3890–3895 (1988)

    Article  ADS  Google Scholar 

  39. Hall, M.J.W., O’Rourke, M.J.: Realistic performance of the maximum information channel. Quantum Opt. 5(3), 161–180 (1993)

    Article  ADS  Google Scholar 

  40. Hall, M.J.W.: Gaussian noise and quantum-optical communication. Phys. Rev. A 50(4), 3295–3303 (1994)

    Article  ADS  Google Scholar 

  41. Musslimani, Z.H., Braunstein, S.L., Mann, A., Revzen, M.: Destruction of photocount oscillations by thermal noise. Phys. Rev. A 51(6), 4967–4973 (1995)

    Article  ADS  Google Scholar 

  42. Holevo, A.S., Werner, R.F.: Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63(3), 032312 (2001)

    Article  ADS  Google Scholar 

  43. Harrington, J., Preskill, P.: Achievable rates for the Gaussian quantum channel. Phys. Rev. A 64(6), 062301 (2001)

    Article  ADS  Google Scholar 

  44. D’Ariano, G.M., Lo Presti, P.: Imprinting complete information about a quantum channel on its output state. Phys. Rev. Lett. 91(4), 047902 (2003)

    Article  ADS  Google Scholar 

  45. Serafini, A., Illuminati, F., Paris, M.G.A., De Siena, S.: Entanglement and purity of two-mode Gaussian states in noisy channels. Phys. Rev. A 69(2), 022318 (2004)

    Article  ADS  Google Scholar 

  46. Giovannetti, V., Lloyd, S., Maccone, L., Shapiro, J.H., Yen, B.J.: Minimum Rényi and Wehrl entropies at the output of bosonic channels. Phys. Rev. A 70(2), 022328 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Shapiro, J.H.: Minimum output entropy of bosonic channels: A conjecture. Phys. Rev. A 70(3), 032315 (2004)

    Article  ADS  Google Scholar 

  48. Giovannetti, V., Lloyd, S.: Additivity properties of a Gaussian channel. Phys. Rev. A 69(6), 062307 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Caves, C.M., Wódkiewicz, K.: Classical phase-space descriptions of continuous-variable teleportation. Phys. Rev. Lett. 93(4), 040506 (2004)

    Article  ADS  Google Scholar 

  50. Caves, C.M., Wódkiewicz, K.: Fidelity of Gaussian channels. Open Syst. Inf. Dyn. 11(4), 309–323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Cerf, N.J., Clavareau, J., Macchiavello, C., Roland, J.: Quantum entanglement enhances the capacity of bosonic channels with memory. Phys. Rev. A 72(4), 042330 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  52. Belavkin, V.P., Dariano, G.M., Raginsky, M.: Operational distance and fidelity for quantum channels. J. Math. Phys. 46(6), 062106 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Caruso, F., Giovannetti, V.: Degradability of bosonic Gaussian channels. Phys. Rev. A 74(6), 062307 (2006)

    Article  ADS  Google Scholar 

  54. Caruso, F., Giovannetti, V., Holevo, A.S.: One-mode bosonic Gaussian channels: a full weak-degradability classification. New J. Phys. 8(12), 310 (2006)

    Article  ADS  Google Scholar 

  55. Holevo, A.S.: One-mode quantum Gaussian channels: structure and quantum capacity. Prob. Inf. Transm. 43(1), 1–11 (2007)

    Article  MATH  Google Scholar 

  56. Scott, A.J., Caves, C.M.: Teleportation fidelity as a probe of sub-Planck phase-space structure. Ann. Phys. 323(11), 2685–2708 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Ivan, J.S., Sabapathy, K.K., Simon, R.: Operator-sum representation for bosonic Gaussian channels. Phys. Rev. A 84(4), 042311 (2011)

    Article  ADS  Google Scholar 

  58. Ciccarello, F., Giovannetti, V.: Local-channel-induced rise of quantum correlations in continuous-variable systems. Phys. Rev. A 85(2), 022108 (2012)

    Article  ADS  Google Scholar 

  59. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621–669 (2012)

    Article  ADS  Google Scholar 

  60. Holevo, A.S.: Quantum Systems, Channels, Information. De Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  61. Giovannetti, V., Holevo, A.S., Garcia-Patron, R.: A solution of Gaussian optimizer conjecture for quantum channels. Commun. Math. Phys. 334(3), 1553–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Holevo, A.S.: The classical capacity of quantum Gaussian gauge-covariant channels: beyond i.i.d. IEEE Inf. Theory Soc. Newslett. 66(4), 3–6 (2016)

    Google Scholar 

  63. Amosov, G.: On classical capacity of Weyl channels. Quantum Inf. Process. 19, 401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  64. Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4(7), 205–207 (1979)

    Article  ADS  Google Scholar 

  65. Hillery, M.: Nonclasssical distance in quantum optics. Phys. Rev. A 35(2), 725–732 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  66. Kim, M.S., De Oliveira, F.A.M., Knight, P.L.: Properties of squeezed number states and squeezed thermal states. Phys. Rev. A 40(5), 2494–2503 (1989)

    Article  ADS  Google Scholar 

  67. Lee, C.T.: Measure of the nonclassicality of nonclassical states. Phys. Rev. A 44(5), R2775–R2778 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  68. Lee, C.T.: Moments of P functions and nonclassical depths of quantum states. Phys. Rev. A 45(9), 6586–6595 (1992)

    Article  ADS  Google Scholar 

  69. Lee, C.T.: Theorem on nonclassical states. Phys. Rev. A 52(4), 3374–3376 (1995)

    Article  ADS  Google Scholar 

  70. Lütkenhaus, N., Barnett, S.M.: Nonclassical effects in phase space. Phys. Rev. A 51(4), 3340–3342 (1995)

    Article  ADS  Google Scholar 

  71. Richter, Th., Vogel, W.: Nonclassicality of quantum states: a hierarchy of observable conditions. Phys. Rev. Lett. 89(28), 283601 (2002)

    Article  ADS  Google Scholar 

  72. Marian, P., Marian, T.A., Scutaru, H.: Quantifying nonclassicality of one-mode Gaussian states of the radiation field. Phys. Rev. Lett. 88(15), 153601 (2002)

    Article  ADS  Google Scholar 

  73. Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, London (2003)

    Book  Google Scholar 

  74. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94(17), 173602 (2005)

    Article  ADS  Google Scholar 

  75. Shchukin, E., Richter, Th., Vogel, W.: Nonclassicality criteria in terms of moments. Phys. Rev. A 71(1), 011802(R) (2005)

    Article  ADS  Google Scholar 

  76. Gehrke, C., Sperling, J., Vogel, W.: Quantification of nonclassicality. Phys. Rev. A 86(5), 052118 (2012)

    Article  ADS  Google Scholar 

  77. Yadin, B., Binder, F.C., Thompson, J., Narasimhachar, V., Gu, M., Kim, M.S.: Operational resource theory of continuous-variable nonclassicality. Phys. Rev. X 8(4), 041038 (2018)

    Google Scholar 

  78. Kwon, H., Tan, K.C., Volkoff, T., Jeong, H.: Nonclassicality as a quantifiable resource for quantum metrology. Phys. Rev. Lett. 122(4), 040503 (2019)

    Article  ADS  Google Scholar 

  79. De Bièvre, S., Horoshko, D.B., Patera, G., Kolobov, M.I.: Measuring nonclassicality of Bosonic field quantum states via operator ordering sensitivity. Phys. Rev. Lett. 122(8), 080402 (2019)

    Article  Google Scholar 

  80. Luo, S., Zhang, Y.: Quantifying nonclassicality via Wigner–Yanase skew information. Phys. Rev. A 100(3), 032116 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  81. Luo, S., Zhang, Y.: Detecting nonclassicality of light via Lieb’s concavity. Phys. Lett. A 383(26), 125836 (2019)

    Article  MathSciNet  Google Scholar 

  82. Luo, S., Zhang, Y.: Quantumness of Bosonic field states. Int. J. Theor. Phys. 59(1), 206–217 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang, Y., Luo, S.: Quantum states as observables: their variance and nonclassicality. Phys. Rev. A 102(6), 062211 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  84. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform part I. Commun. Pure Appl. Math. 14(3), 187–214 (1961)

    Article  MATH  Google Scholar 

  85. Fukuda, M., Holevo, A.S.: On Weyl-covariant channels. arXiv: quant-ph/0510148 (2006)

  86. Amosov, G.G.: On Weyl channels being covariant with respect to the maximum commutative group of unitaries. J. Math. Phys. 48(1), 012104 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. Siudzińska, K.: Generalization of Pauli channels through mutually unbiased measurements. Phys. Rev. A 102(3), 032603 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  88. Landau, L.J., Streater, R.F.: On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras. Linear Algebra Appl. 193, 107–127 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  89. Wang, X.-B.: Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72(5), 050304(R) (2005)

    Article  ADS  Google Scholar 

  90. Buscemi, F.: On the minimum number of unitaries needed to describe a random-unitary channel. Phys. Lett. A 360(2), 256–258 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Audenaert, K.M.R., Scheel, S.: On random unitary channels. New J. Phys. 10(2), 023011 (2008)

    Article  ADS  Google Scholar 

  92. Rosgena, B.: Additivity and distinguishability of random unitary channels. J. Math. Phys. 49(10), 102107 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Chruścinski, D., Wudarski, F.A.: Non-Markovianity degree for random unitary evolution. Phys. Rev. A 91(1), 012104 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  94. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49(6), 910–918 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Luo, S.: Wigner-Yanase skew information vs. quantum Fisher information. Proc. Am. Math. Soc. 132(3), 885–890 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  96. Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69(3), 032106 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  97. Cahill, K.E., Glauber, R.J.: Density operators and quasiprobability distributions. Phys. Rev. 177(5), 1882–1902 (1969)

    Article  ADS  Google Scholar 

  98. Royer, A.: Wigner function as the expectation value of a parity operator. Phys. Rev. A 15(2), 449–450 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  99. Lieb, E.H.: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102(1), 179–208 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, Grant No. 2020YFA0712700, and the National Natural Science Foundation of China, Grant Nos. 11875317 and 61833010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Luo, S. Quantifying Decoherence of Gaussian Noise Channels. J Stat Phys 183, 19 (2021). https://doi.org/10.1007/s10955-021-02758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02758-6

Keywords

Navigation