Skip to main content

Advertisement

Log in

Optimal Design of Spiral Coil EMATs for Improving Their Pulse Compression Effect

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

When chirp pulse compression technology (PCT) is applied in Electromagnetic Acoustic Transducers (EMATs), the frequency response characteristic of the EMAT testing system may be inconsistent with the chirp signal bandwidth. Furthermore, it causes a loss in the frequency spectrum and distortion of the ultrasonic echo waveform, leading to a decrease in the signal-to-noise ratio (SNR) and range resolution of the pulse compressed signal. To solve this problem which has not been further researched in the previous publications, we proposed a new circuit-field coupling finite element model for ultrasonic wave generation of the spiral coil EMAT for enhancing the pulse compression effect, and the excitation circuit for the EMAT is also considered in this model. Furthermore, the effects of the diameter of the spiral coil wire, matching method of the impedance matching network, and parameter of the matching components on the peak and width of the main lobe after pulse compression were analysed through simulations and experiments. Subsequently, the optimal combination of the EMAT coil conductor diameter, impedance matching method, and matching component parameters were determined and verified by experiments. The results show that the SNR and range resolution of the pulse compressed ultrasonic signal can be largely enhanced when the diameter of the spiral coil wire, impedance matching method, and the parameter of the matching components are chosen carefully. When the aforementioned parameters are appropriately selected, the amplitude of the main lobe can be increased 3.16 times, and the width of the main lobe is reduced by 31.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kubrusly, A.C., Freitas, M.A., von der Weid, J.P., et al.: Interaction of SH guided waves with wall thinning. NDT E Int. 101, 94–103 (2019)

    Article  Google Scholar 

  2. Liu, Z., Zhao, X., Li, J., et al.: Obliquely incident EMAT for high-order Lamb wave mode generation based on inclined static magnetic field. NDT E Int. 104, 124–134 (2019)

    Article  Google Scholar 

  3. Thring, C.B., Fan, Y., Edwards, R.S.: Focused Rayleigh wave EMAT for characterisation of surface-breaking defects. NDT E Int. 81, 20–27 (2016)

    Article  Google Scholar 

  4. Ren, W., Xu, K., Dixon, S., et al.: A study of magnetostriction mechanism of EMAT on low-carbon steel at high temperature. NDT E Int. 101, 34–43 (2019)

    Article  Google Scholar 

  5. García-Gómez, J., Gil-Pita, R., Rosa-Zurera, M., et al.: Smart sound processing for defect sizing in pipelines using EMAT actuator based multi-frequency lamb waves. Sensors 18(3), 802–820 (2018)

    Article  Google Scholar 

  6. Choi, S., Cho, H., Lindsey, M.S., et al.: Electromagnetic acoustic transducers for robotic nondestructive inspection in harsh environments. Sensors 18(1), 193–206 (2018)

    Article  Google Scholar 

  7. Shapoorabadi, R.J., Konrad, A., Sinclair, A.N.: Computation of current densities in the receiving mode of EMATs. J. Appl. Phys. 97(10), 1–3 (2005)

    Google Scholar 

  8. Kubinyi, M., Kreibich, O., Neuzil, J., et al.: EMAT noise suppression using information fusion in stationary wavelet packets. IEEE Trans. Ultrason. Ferr. 58(5), 1027–1036 (2011)

    Article  Google Scholar 

  9. Isla, J., Cegla, F.: Optimization of the bias magnetic field of shear wave EMATs. IEEE Trans. Ultrason. Ferr. 63(8), 1148–1160 (2016)

    Article  Google Scholar 

  10. Zao, Y., Ouyang, Q., Chen, J., et al.: Design and implementation of improved Ls Cp Lp resonant circuit for power supply for high-power electromagnetic acoustic transducer excitation. Rev. Sci. Instrum. 88(8), 84707–84716 (2017)

    Article  Google Scholar 

  11. Takishita, T., Ashida, K., Nakamura, N., et al.: Development of shear-vertical-wave point-focusing electromagnetic acoustic transducer. Jpn. J. Appl. Phys. 54, 07HC04-01-07HC04-04 (2015)

    Article  Google Scholar 

  12. Huang, S., Sun, H., Shen, G., et al.: Characteristics of T(0, 1) guided-wave point-focusing electromagnetic acoustic transducer for pipe inspection. IEEE Sens. J. 20(6), 2895–2903 (2020)

    Article  Google Scholar 

  13. Sun, H., Peng, L., Huang, S., et al.: Analytical model and optimal focal position selection for oblique point-focusing shear horizontal guided wave EMAT. Constr. Build Mater. 258, 120375 (2020)

    Article  Google Scholar 

  14. Sun, H., Peng, L., Wang, S., et al.: Development of frequency-mixed point-focusing shear horizontal guided-wave EMAT for defect inspection using deep neural network. IEEE Trans. Instrum. Meas. 70, 1–14 (2021)

    Google Scholar 

  15. Fu Y., Pan R.: Research on pulse compression technology of linear frequency modulation signal. ICCSSE. pp. 1131–1133 (2012).

  16. Brookner, E.: Phased-array radars. Sci. Am. 52, 96–98 (1985)

    Google Scholar 

  17. Cook, C.E.: The early history of pulse compression radar. IEEE Trans. Aero Electr. Syst. 24(6), 825–833 (1988)

    Article  Google Scholar 

  18. Jeong, J.S., Chang, J.H., Shung, K.K.: Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: a preliminary stud. Ultrasonics 52(6), 730–736 (2012)

    Article  Google Scholar 

  19. Song, J., Kim, S., Sohn, H., et al.: Coded excitation for ultrasound tissue harmonic imaging. Ultrasonics 50(6), 613–619 (2010)

    Article  Google Scholar 

  20. Sanchez, J., Oelze, M.: An ultrasonic imaging speckle-suppression and contrast-enhancement technique by means of frequency compounding and coded excitation. IEEE Trans. Ultrason Ferr. 56(7), 1327–1339 (2009)

    Article  Google Scholar 

  21. Lam, F., Szilard, J.: Pulse compression techniques in ultrasonic non-destructive testing. Ultrasonics 14(3), 111–114 (1976)

    Article  Google Scholar 

  22. Luo, Z., Lin, J., Zeng, L., et al.: Mode purification for ultrasonic guided waves under pseudopulse excitation. J. Phys. Conf. Ser. 628, 012123-1-012123–8 (2015)

    Article  Google Scholar 

  23. Gan, T.H., Hutchins, D.A., Billson, D.R., et al.: The use of broadband acoustic transducers and pluse compression techniques for air-coupled ultrasonic imaging. Ultrasonics 39, 181–194 (2001)

    Article  Google Scholar 

  24. Ho, K.S., Gan, T.H., Billson, D.R., et al.: Application of pulse compression signal processing techniques to electromagnetic acoustic acoustic transducers for noncontact thickness measurements and imaging. Rev. Sci. Instrum. 104, 39–55 (2005)

    Google Scholar 

  25. Iizuka, Y., Awajiya, Y.: High sensitivity EMAT system using chirp pulse compression and its application to crater end detection in continuous casting. J. Phys. Conf. Ser. 520, 0120111–0120114 (2014)

    Article  Google Scholar 

  26. Isla, J., Celga, F.: The use of binary quantization for the acquisition of low SNR ultrasonic signals: a study of the input dynamic range. IEEE Trans. Ultrason. Ferr. 63(9), 1474–1482 (2016)

    Article  Google Scholar 

  27. Isla, J., Celga, F.: Coded excitation for pulse-echo systems. IEEE Trans. Ultrason. Ferr. 64(4), 736–748 (2017)

    Article  Google Scholar 

  28. Daura, L.U., Tian, G.Y.: Wireless power transfer based non-destructive evaluation of cracks in aluminum material. IEEE Sens. J. 19(22), 10529–10536 (2019)

    Article  Google Scholar 

  29. Dutton, B., Boonsang, S., Dewhurst, R.J.: A new magnetic configuration for a small in-plane electromagnetic acoustic transducer applied to laser-ultrasound measurements: modelling and validation. Sensor Actuators A 125(2), 249–259 (2006)

    Article  Google Scholar 

  30. Jafari-shapoorabadi, R., Konrad, A., Sinclaire, A.N.: Comparison of three formulations for Eddy-current and skin effect problems. IEEE Trans. Magn. 38(2), 617–620 (2002)

    Article  Google Scholar 

  31. Hirao, M., Ogi, H.: EMATs for Science and Industry: Noncontacting Ultrasonic Measurements. Kluwer Academic, New York (2003)

    Book  Google Scholar 

  32. Shi, W., Wu, Y., Gong, H., et al.: Optimal design of spiral coil electromagnetic acoustic transducers considering lift-off sensitivity operating on non-ferromagnetic media. Nondestruct. Test. Eval. 33(1), 56–74 (2018)

    Article  Google Scholar 

  33. Costa-Felix R. P. B. D., Machado J. C., Barros A. L. P.: P2D-9 a frequency-compensated coded-excitation pulse to improve axial resolution of ultrasonic system. In 2006 Ultrasonics Symposium, IEEE, pp. 1651–1654, 2006, Vancouver, BC.

  34. Fu, J., Wei, G., Huang, Q., et al.: Barker coded excitation with linear frequency modulated carrier for ultrasonic imaging. Biomed. Signal Process. 13, 306–312 (2014)

    Article  Google Scholar 

  35. Zhou, Z., Ma, B., Jiang, J., et al.: Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing. Nondestruct. Test. Eval. 29(4), 297–314 (2014)

    Article  Google Scholar 

Download references

Funding

Funding was supported by National Natural Science Foundation of China (Grant Nos. 52065049, 12064001, 51705231, and 51705232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Chen, W., Lu, C. et al. Optimal Design of Spiral Coil EMATs for Improving Their Pulse Compression Effect. J Nondestruct Eval 40, 38 (2021). https://doi.org/10.1007/s10921-021-00771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00771-z

Keywords

Navigation