Skip to main content
Log in

Propagation characteristics of weakly magnetized electromagnetic modes in a relativistic partially degenerate electron plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Using the linearized Vlasov–Maxwell model and the polarization tensor components for weakly magnetized (\(\left| \omega -{\mathbf {k}}\cdot {\mathbf {v}}\right| >\varOmega \)) electron plasma the dispersion relations of parallel and perpendicular propagating electromagnetic modes are evaluated under high frequency/long wavelength limit (i.e., \(\omega >{\mathbf{k }}\cdot {\mathbf{v }}\)). The propagation characteristics of R–L and ordinary waves are discussed in the presence of isotropic Fermi–Dirac distribution function in a relativistic regime. The Polylog functions that arise due to arbitrary/partial degeneracy are examined in various degeneracy and relativistic limits. The graphical results are also extracted in the presence of quantum non-degenerate, degenerate and fully degenerate regimes due to the variation in relativistic parameter \((\frac{T}{ m_{0}c^{2}})\), Lorentz factor (\(\gamma \)) and degeneracy parameter \((\frac{\mu }{T})\) in weakly and strongly relativistic limits. Furthermore, the derived results are found to be in complete agreement with the previous investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. C S Gurel and E Oncu Prog. Electromagn. Res. B 21 385 (2010)

    Article  Google Scholar 

  2. A Sagiv and E Waxmn ApJ 574 861 (2002)

  3. G B van Albada Astrophys. J. 105 393 (1947)

  4. M H Thoma Eur. Phys. J. D 55 271 (2009)

  5. S A Khan Phys. Plasmas 19 014506 (2012)

  6. N Roy, S Tasnim and A A Mamun Phys. Plasmas 19 033705 (2012)

    Article  ADS  Google Scholar 

  7. L Nahar, M S Zobaer, N Roy and A A Mamun Phys. Plasmas 20 022304 (2013)

    Article  ADS  Google Scholar 

  8. A C Hayes, et al . Nat. Phys. 16 432 (2020)

    Article  Google Scholar 

  9. M Zaghoo, T R Boehly, J R Rygg, P M Celliers, S X Hu and G W Collins arXiv:1901.11410 [physics.plasm-ph]

  10. G E Morfill, et al. Phys. Rev. Lett. 92 175004 (2004)

  11. S Son and N J Fisch Phys. Lett. A 356 1 (2006)

  12. D Shaikh and P K Shukla Phys. Rev. Lett. 99 125002 (2007)

    Article  ADS  Google Scholar 

  13. P K Shukla Nat. Phys. 5 92 (2009)

  14. V P Silin J. Exp. Theor. Phys. (U.S.S.R.) 38 1577 (1960)

  15. J T Mendonca Phys. Plasmas 18 062101 (2011)

  16. N Maafa Phys. Scr. 48 351 (1993)

  17. D B Melrose and A Mushtaq Phys. Rev. E 82 056402 (2010)

    Article  ADS  Google Scholar 

  18. D B Melrose and A Mushtaq Phys. Plasmas 17 122103 (2010)

    Article  ADS  Google Scholar 

  19. F Haas and S Mahmood Phys. Rev. E 92 0523112 (2015)

    Article  ADS  Google Scholar 

  20. B Eliasson and P K Shukla Phys. Scr. 78 025503 (2008)

    Article  ADS  Google Scholar 

  21. B Eliasson and M A Moghanjoughi Phys. Lett. A 380 2518 (2016)

    Article  ADS  Google Scholar 

  22. M A Moghanjoughi Phys. Plasmas 24 012113 (2017)

  23. J Bergman and B Eliasson Phys. Plasmas 8 1482 (2001)

    Article  ADS  Google Scholar 

  24. N L Tsintsadze, A Rasheed, H A Shah and G Murtaza Phys. Plasmas 16 112307 (2009)

    Article  ADS  Google Scholar 

  25. A Rasheed, N L Tsintsadze and G Murtaza Phys. Plasmas 18 112701 (2011)

    Article  ADS  Google Scholar 

  26. G Abbas, Z Iqbal and G Murtaza Phys. Plasmas 22 032110 (2015)

    Article  ADS  Google Scholar 

  27. M Sarfraz, H Farooq, G Abbas, S Noureen, Z Iqbal and A Rasheed Phys. Plasmas 25 032106 (2018)

    Article  ADS  Google Scholar 

  28. S Noureen, G Abbas and M Sarfraz Phys. Plasmas 25 012123 (2018)

    Article  ADS  Google Scholar 

  29. S Noureen, G Abbas and H Farooq Phys. Plasmas 24 092103 (2017)

    Article  ADS  Google Scholar 

  30. G Abbas, G Murtaza and R J Kingham Phys. Plasmas 17 072105 (2010)

    Article  ADS  Google Scholar 

  31. A F Alexandrov, A S Bogdankevich and A A Rukhadze Principles of Plasma Electro-Dynamics (Berlin: Springer) 9, Chapter 1–5 (1984)

  32. G Abbas, M Sarfraz and H A Shah Phys. Plasmas 21 092108 (2014)

    Article  ADS  Google Scholar 

  33. H Farooq, M Sarfraz, Z Iqbal, G Abbas and H A Shah Phys. Plasmas 26 110301 (2017)

    Google Scholar 

  34. G Abbas, M F Bashir, M Ali and G Murtaza Phys. Plasmas 19 032103 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Noureen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noureen, S. Propagation characteristics of weakly magnetized electromagnetic modes in a relativistic partially degenerate electron plasma. Indian J Phys 96, 937–945 (2022). https://doi.org/10.1007/s12648-021-02046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02046-9

Keywords

Navigation